Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 238(1): 80-95, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300568

RESUMO

Ericaceous shrubs adapt to the nutrient-poor conditions in ombrotrophic peatlands by forming symbiotic associations with ericoid mycorrhizal (ERM) fungi. Increased nutrient availability may diminish the role of ERM pathways in shrub nutrient uptake, consequently altering the biogeochemical cycling within bogs. To explore the significance of ERM fungi in ombrotrophic peatlands, we developed the model MWMmic (a peat cohort-based biogeochemical model) into MWMmic-NP by explicitly incorporating plant-soil nitrogen (N) and phosphorus (P) cycling and ERM fungi processes. The new model was applied to simulate the biogeochemical cycles in the Mer Bleue (MB) bog in Ontario, Canada, and their responses to fertilization. MWMmic_NP reproduced the carbon(C)-N-P cycles and vegetation dynamics observed in the MB bog, and their responses to fertilization. Our simulations showed that fertilization increased shrub biomass by reducing the C allocation to ERM fungi, subsequently suppressing the growth of underlying Sphagnum mosses, and decreasing the peatland C sequestration. Our species removal simulation further demonstrated that ERM fungi were key to maintaining the shrub-moss coexistence and C sink function of bogs. Our results suggest that ERM fungi play a significant role in the biogeochemical cycles in ombrotrophic peatlands and should be considered in future modeling efforts.


Assuntos
Micorrizas , Áreas Alagadas , Fungos , Plantas/metabolismo , Biomassa , Fertilização , Solo
2.
PLoS One ; 17(11): e0275149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417456

RESUMO

Peatlands account for 15 to 30% of the world's soil carbon (C) stock and are important controls over global nitrogen (N) cycles. However, C and N concentrations are known to vary among peatlands contributing to the uncertainty of global C inventories, but there are few global studies that relate peatland classification to peat chemistry. We analyzed 436 peat cores sampled in 24 countries across six continents and measured C, N, and organic matter (OM) content at three depths down to 70 cm. Sites were distinguished between northern (387) and tropical (49) peatlands and assigned to one of six distinct broadly recognized peatland categories that vary primarily along a pH gradient. Peat C and N concentrations, OM content, and C:N ratios differed significantly among peatland categories, but few differences in chemistry with depth were found within each category. Across all peatlands C and N concentrations in the 10-20 cm layer, were 440 ± 85.1 g kg-1 and 13.9 ± 7.4 g kg-1, with an average C:N ratio of 30.1 ± 20.8. Among peatland categories, median C concentrations were highest in bogs, poor fens and tropical swamps (446-532 g kg-1) and lowest in intermediate and extremely rich fens (375-414 g kg-1). The C:OM ratio in peat was similar across most peatland categories, except in deeper samples from ombrotrophic tropical peat swamps that were higher than other peatlands categories. Peat N concentrations and C:N ratios varied approximately two-fold among peatland categories and N concentrations tended to be higher (and C:N lower) in intermediate fens compared with other peatland types. This study reports on a unique data set and demonstrates that differences in peat C and OM concentrations among broadly classified peatland categories are predictable, which can aid future studies that use land cover assessments to refine global peatland C and N stocks.


Assuntos
Carbono , Solo , Carbono/química , Solo/química , Áreas Alagadas , Nitrogênio
3.
Nat Commun ; 9(1): 3640, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194308

RESUMO

Peatlands represent large terrestrial carbon banks. Given that most peat accumulates in boreal regions, where low temperatures and water saturation preserve organic matter, the existence of peat in (sub)tropical regions remains enigmatic. Here we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Near-surface low-latitude peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, creating a reduced oxidation state and resulting recalcitrance. This recalcitrance allows peat to persist in the (sub)tropics despite warm temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable despite temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

4.
Sci Rep ; 8(1): 3838, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497129

RESUMO

Peatlands are globally significant sources of atmospheric methane (CH4). While several studies have examined the effects of nutrient addition on CH4 dynamics, there are few long-term peatland fertilization experiments, which are needed to understand the aggregated effects of nutrient deposition on ecosystem functioning. We investigated responses of CH4 flux and production to long-term field treatments with three levels of N (1.6-6.4 g m-2 yr-1 as NH4NO3), potassium and phosphorus (PK, 5.0 g P and 6.3 g K m-2 yr-1 as KH2PO4), and NPK in a temperate bog. Methane fluxes were measured in the field from May to August in 2005 and 2015. In 2015 CH4 flux was higher in the NPK treatment with 16 years of 6.4 g N m-2 yr-1 than in the control (50.5 vs. 8.6 mg CH4 m-2 d-1). The increase in CH4 flux was associated with wetter conditions derived from peat subsidence. Incubation of peat samples, with and without short-term PK amendment, showed that potential CH4 production was enhanced in the PK treatments, both from field application and by amending the incubation. We suggest that changes in this bog ecosystem originate from long-term vegetation change, increased decomposition and direct nutrient effects on microbial dynamics.


Assuntos
Metano/química , Nutrientes/química , Solo/química , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Nitrogênio/metabolismo , Ontário , Fósforo/metabolismo , Potássio/metabolismo , Estações do Ano , Áreas Alagadas
5.
Sci Total Environ ; 631-632: 714-722, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544176

RESUMO

Pools are common in northern peatlands but studies have seldom focused on their nutrient biogeochemistry, especially in relation to their morphological characteristics and through seasons. We determined the environmental characteristics controlling carbon (C), nitrogen (N) and phosphorus (P) biogeochemistry in pools and assessed their evolution over the course of the 2016 growing season in a subboreal ombrotrophic peatland of eastern Canada. We showed that water chemistry variations in 62 pools were significantly explained by depth (81.9%) and the surrounding vegetation type (14.8%), but not by pool area or shape. Shallow pools had larger dissolved organic carbon (DOC) and total nitrogen (TN) concentrations and lower pH than deep pools, while pools surrounded by coniferous trees had more recalcitrant DOC than pools where vegetation was dominated by mosses. The influence of depth on pool biogeochemistry was confirmed by the seasonal survey of pools of different sizes with 47.1% of the variation in pool water chemistry over time significantly explained. Of this, 67.3% was explained by the interaction between time and pool size and 32.7% by pool size alone. P concentrations were small in all pools all summer long and combined with high N:P ratios, are indicative of P-limitation. Our results show that pool biogeochemistry is influenced by internal processes and highlight the spatial and temporal heterogeneity of nutrient biogeochemistry in ombrotrophic peatlands.

6.
Sci Total Environ ; 621: 1255-1263, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055599

RESUMO

Nutrient availability is an important control on the vegetation distribution, productivity and functioning of peatland ecosystems and we examined spatial and temporal patterns of nutrient availability through ion exchange at Mer Bleue bog, southeast Ontario, Canada. We installed ion exchange probes at 5-15cm for 4weeks and determined nutrient sorption at undisturbed sites as well as those affected by nitrogen (N), phosphorus (P), potassium (K) fertilization and drainage. Under undisturbed conditions, the bog had very small amount of available nutrients, especially N (ammonium>nitrate) and P, and exhibited small variations in nutrient availability during the growing season (May to October). The increase in NPK availability upon fertilization was short-lived over the season and the stoichiometry of available NPK captured by the probes was mismatched with the vegetation. The increase in nutrient availability with drainage was confounded by substantial changes in vegetation. We compare these results with data from other Canadian bogs and fens to provide baseline data on nutrient availability in peatlands.

7.
Environ Pollut ; 231(Pt 1): 890-898, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28886534

RESUMO

While considerable attention has been given to the measurement of mercury (Hg) and lead (Pb) concentrations and accumulation in detailed peat cores in central Canada, the geographic distribution and density of sampling are generally limited. Here, we use the Ontario Peatland Inventory to examine broad patterns of Hg and Pb concentration with depth, based on 338 peat cores (containing >1500 analyzed samples) from 127 bogs, fens and swamps located in southeastern, northeastern and northwestern sections of Ontario. Overall, Hg concentrations averaged 0.05 µg g-1 and that of Pb averaged 10.8 µg g-1. Maximum values in the top 50 cm of the profiles are 0.08 µg g-1 and 26.2 µg g-1 for Hg and Pb, respectively. The ratio between these values (surface) and the values from below 100 cm (background), where peat likely accumulated before 1850 and industrial activities were limited, are 2.3 and 6.6 for Hg and Pb, respectively. The highest surface:background concentration ratios are generally found in the westernmost part of the province and in the southeast for Hg and around areas that are more heavily populated for Pb. Our results show that a vast amount of Hg and Pb are stored in Ontarian peatlands, although the spatial distribution of these stores varies. The rapid decomposition of peat in a changing climate could release these pollutants to the atmosphere.


Assuntos
Monitoramento Ambiental , Chumbo/análise , Mercúrio/análise , Poluentes do Solo/análise , Solo/química , Atmosfera , Ontário , Áreas Alagadas
8.
Sci Total Environ ; 511: 381-92, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25555258

RESUMO

The inundation of boreal forests and peatlands through the construction of hydroelectric reservoirs can increase carbon dioxide (CO2) and methane (CH4) emission. To establish controls on emission rates, we incubated samples of forest and peat soils, spruce litter, forest litter and peatland litter collected from boreal ecosystems in northern Quebec for 16 weeks and measured CO2 and CH4 production rates under flooded or non-flooded conditions and varying oxygen concentration and temperature. CO2 production under flooded conditions was less than under non-flooded conditions (5-71 vs. 5-85 mg Cg(-1) C), but CH4 production under flooded conditions was larger than under non-flooded conditions (1-8158 vs. 0-86 µg Cg(-1) C). The average CO2 and CH4 production rate factor for flooded:non-flooded conditions was 0.76 and 1.32, respectively. Under flooded conditions, high oxygen concentrations increased CO2 production in peat soils but decreased CH4 production in forest and peat soils and spruce litter. Warmer temperatures (from 4 to 22°C) raised both CO2 production in peat soils and peatland litter, and CH4 production in peat soils and spruce litter. This study shows that the direction and/or strength of CO2 and CH4 fluxes change once boreal forests and peatlands are inundated.

9.
Glob Chang Biol ; 20(7): 2183-97, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24777536

RESUMO

Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.


Assuntos
Água Subterrânea/análise , Metano/metabolismo , Solo/química , Áreas Alagadas , Meio Ambiente , Geografia , Metano/análise , Temperatura
10.
Environ Microbiol ; 16(6): 1867-78, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24650084

RESUMO

Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments.


Assuntos
Fontes Termais/microbiologia , Microbiota/genética , Verrucomicrobia/genética , Microbiologia da Água , Proteínas de Bactérias/genética , Genes Bacterianos , Concentração de Íons de Hidrogênio , Metano/metabolismo , Oxigenases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Verrucomicrobia/enzimologia
11.
Oecologia ; 174(2): 365-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24078082

RESUMO

Plant resorption of multiple nutrients during leaf senescence has been established but stoichiometric changes among N, P and K during resorption and after fertilization are poorly understood. We anticipated that increased N supply would lead to further P limitation or co-limitation with N or K [i.e. P-(co)limitation], decrease N resorption and increase P and K resorption, while P and K addition would decrease P and K resorption and increase N resorption. Furthermore, Ca would accumulate while Mg would be resorbed during leaf senescence, irrespective of fertilization. We investigated the effect of N, P and K addition on resorption in two evergreen shrubs (Chamaedaphne calyculata and Rhododendron groenlandicum) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. In general, N addition caused further P-(co)limitation, increased P and K resorption efficiency but did not affect N resorption. P and K addition did not shift the system to N limitation and affect K resorption, but reduced P resorption proficiency. C. calyculata resorbed both Ca and Mg while R. groenlandicum resorbed neither. C. calyculata showed a higher resorption than R. groenlandicum, suggesting it is better adapted to nutrient deficiency than R. groenlandicum. Resorption during leaf senescence decreased N:P, N:K and K:P ratios. The limited response of N and K and the response of P resorption to fertilization reflect the stoichiometric coupling of nutrient cycling, which varies among the two shrub species; changes in species composition may affect nutrient cycling in bogs.


Assuntos
Ericaceae/metabolismo , Fertilizantes , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Áreas Alagadas , Cálcio/metabolismo , Magnésio/metabolismo , Ontário , Folhas de Planta/metabolismo
12.
Front Microbiol ; 4: 215, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914185

RESUMO

Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses.

13.
Glob Chang Biol ; 19(12): 3729-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23868415

RESUMO

To study vegetation feedbacks of nutrient addition on carbon sequestration capacity, we investigated vegetation and ecosystem CO2 exchange at Mer Bleue Bog, Canada in plots that had been fertilized with nitrogen (N) or with N plus phosphorus (P) and potassium (K) for 7-12 years. Gross photosynthesis, ecosystem respiration, and net CO2 exchange were measured weekly during May-September 2011 using climate-controlled chambers. A substrate-induced respiration technique was used to determine the functional ability of the microbial community. The highest N and NPK additions were associated with 40% less net CO2 uptake than the control. In the NPK additions, a diminished C sink potential was due to a 20-30% increase in ecosystem respiration, while gross photosynthesis rates did not change as greater vascular plant biomass compensated for the decrease in Sphagnum mosses. In the highest N-only treatment, small reductions in gross photosynthesis and no change in ecosystem respiration led to the reduced C sink. Substrate-induced microbial respiration was significantly higher in all levels of NPK additions compared with control. The temperature sensitivity of respiration in the plots was lower with increasing cumulative N load, suggesting more labile sources of respired CO2 . The weaker C sink potential could be explained by changes in nutrient availability, higher woody : foliar ratio, moss loss, and enhanced decomposition. Stronger responses to NPK fertilization than to N-only fertilization for both shrub biomass production and decomposition suggest that the bog ecosystem is N-P/K colimited rather than N-limited. Negative effects of further N-only deposition were indicated by delayed spring CO2 uptake. In contrast to forests, increased wood formation and surface litter accumulation in bogs seem to reduce the C sink potential owing to the loss of peat-forming Sphagnum.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Potássio/metabolismo , Ontário , Estações do Ano , Áreas Alagadas
14.
Oecologia ; 167(2): 355-68, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21544572

RESUMO

Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We measured photosynthesis, foliar chemistry and leaf morphology in three ericaceous shrubs (Vaccinium myrtilloides, Ledum groenlandicum and Chamaedaphne calyculata) in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada, with a background deposition of 0.8 g N m(-2) a(-1). While biomass and chlorophyll concentrations increased in the highest nutrient treatment for C. calyculata, we found no change in the rates of light-saturated photosynthesis (A(max)), carboxylation (V(cmax)), or SLA with nutrient (N with and without PK) addition, with the exception of a weak positive correlation between foliar N and A(max) for C. calyculata, and higher V(cmax) in L. groenlandicum with low nutrient addition. We found negative correlations between photosynthetic N use efficiency (PNUE) and foliar N, accompanied by a species-specific increase in one or more amino acids, which may be a sign of excess N availability and/or a mechanism to reduce ammonium (NH(4)) toxicity. We also observed a decrease in foliar soluble Ca and Mg concentrations, essential minerals for plant growth, but no change in polyamines, indicators of physiological stress under conditions of high N accumulation. These results suggest that plants adapted to low-nutrient environments do not shift their resource allocation to photosynthetic processes, even after reaching N sufficiency, but instead store the excess N in organic compounds for future use. In the long term, bog species may not be able to take advantage of elevated nutrients, resulting in them being replaced by species that are better adapted to a higher nutrient environment.


Assuntos
Ericaceae/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Ericaceae/anatomia & histologia , Ericaceae/química , Ericaceae/crescimento & desenvolvimento , Nitrogênio/análise , Ontário , Folhas de Planta/anatomia & histologia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Quebeque , Rhododendron/anatomia & histologia , Rhododendron/química , Rhododendron/crescimento & desenvolvimento , Rhododendron/fisiologia , Vaccinium/anatomia & histologia , Vaccinium/química , Vaccinium/crescimento & desenvolvimento , Vaccinium/fisiologia , Áreas Alagadas
15.
Oecologia ; 157(2): 317-25, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18560899

RESUMO

The large accumulation of organic matter in peatlands has been partially attributed to litter decomposition rates, which are slowed by a high water table. To test this, we examined whether there were significant differences in the decomposition and N and P dynamics of ten foliar litters and wood blocks at three pairs of upland forest and peatland sites in the transitional grassland, high boreal and low subarctic regions of central Canada, using litterbags collected over a 12-year period. At two of the three pairs, the decomposition rate, as determined by proportion of the original mass remaining after 12 years and by the exponential decay coefficient (k), was faster overall at the upland than at the peatland. In the third pair, there was no significant difference, despite the water table being close to the peat surface; warmer soil temperatures in the peatland than the upland may be the cause. In general, there were small losses or gains of N in the litters after 12 years, compared to the original litter, though there were some differences among litter types and sites, net gains in N likely reflecting the higher exogenous N availability. P was lost from most litters at the two northern pairs of sites, but at the transitional grassland pair, there were large net gains in P and greater variation among litters. The N:P ratio in the original litters ranged from 5 to 26 and after 12 years the ratio narrowed, with the site average of the ten litters ranging from 13 to 22, varying with the soil ratio. Decomposition rates and N and P dynamics after 12 years are different between upland and peatland sites: although the water table is a primary control on these differences, other factors such as temperature and soil nutrient status are also important.


Assuntos
Geografia , Nitrogênio/análise , Fósforo/análise , Solo , Canadá , Festuca/crescimento & desenvolvimento , Picea/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Água , Movimentos da Água
16.
17.
Sci Total Environ ; 364(1-3): 215-28, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15996718

RESUMO

In large regions of Europe and North America, peatlands have been exposed to elevated rates of atmospheric nitrogen (N) deposition. We investigated the fate of experimentally added N (NH(4)(15)NO3) at two different N loads (1.2 and 4.7 g N m(-2) yr(-1)) and water tables (1 and 32 cm) in intact cores from two peatlands, located in Central and Eastern Canada. The sites receive an estimated total N load of 0.6 g m(-2) a(-1) and 1.5 g m(-2) yr(-1), excluding nitrogen fixation. In all treatments, experimentally added nitrate (NO(3-)) was fully (96-99%) and ammonium (NH(4+)) mostly (81-97%) retained by the plant cover, mainly consisting of Sphagnum mosses, or in the unsaturated zone below. However, on average only 48% of the (15)N were recovered from the plant cover, and substantial amounts were found in depth layers of 2-6 cm (21-46%) and 8-12 cm (1.4-10.8%) below the moss surface. The amount of (15)N retained also significantly decreased with a lower water table from 56+/-9% to 40+/-10%. These findings document a substantial mobility of N, particularly during water table drawdown. Analysis of (15)N by a sequential diffusion procedure revealed a transfer of (15)N from NO(3-) into NH(4+) and dissolved organic N (DON), but the contents of (15)N in these pools accounted for less than 1% of the total N, natural background subtracted. The mass flux of dissolved (15)N into the peat was small compared to the total mass flux of (15)N. The accumulation of (15)N in the bulk peat must have been caused by a mechanism that was not investigated, possibly by transport of particulate organic N.


Assuntos
Poluentes Atmosféricos/metabolismo , Ecossistema , Nitrogênio/metabolismo , Solo/análise , Sphagnopsida/metabolismo , Poluentes da Água/metabolismo , Poluentes Atmosféricos/análise , Canadá , Monitoramento Ambiental/métodos , Nitrogênio/análise , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Sphagnopsida/química , Água/análise , Poluentes da Água/análise
18.
Ambio ; 34(6): 456-61, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16201217

RESUMO

This study uses life-cycle analysis to examine the net greenhouse gas (GHG) emissions from the Canadian peat industry for the period 1990-2000. GHG exchange is estimated for land-use change, peat extraction and processing, transport to market, and the in situ decomposition of extracted peat. The estimates, based on an additive GHG accounting model, show that the peat extraction life cycle emitted 0.54 x 10(6) t of GHG in 1990, increasing to 0.89 x 10(6) t in 2000 (expressed as CO2 equivalents using a 100-y time horizon). Peat decomposition associated with end use was the largest source of GHGs, comprising 71% of total emissions during this 11-y period. Land use change resulted in a switch of the peatlands from a GHG sink to a source and contributed an additional 15%. Peat transportation was responsible for 10% of total GHG emissions, and extraction and processing contributed 4%. It would take approximately 2000 y to restore the carbon pool to its original size if peatland restoration is successful and the cutover peatland once again becomes a net carbon sink.


Assuntos
Poluentes Atmosféricos , Gases , Solo , Canadá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...