Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Radiol Ultrasound ; 62(4): 387-393, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33818829

RESUMO

Reports of machine learning implementations in veterinary imaging are infrequent but changes in machine learning architecture and access to increased computing power will likely prompt increased interest. This diagnostic accuracy study describes a particular form of machine learning, a deep learning convolution neural network (ConvNet) for hip joint detection and classification of hip dysplasia from ventro-dorsal (VD) pelvis radiographs submitted for hip dysplasia screening. 11,759 pelvis images were available together with their Fédération Cynologique Internationale (FCI) scores. The dataset was dicotomized into images showing no signs of hip dysplasia (FCI grades "A" and "B", the "A-B" group) and hips showing signs of dysplasia (FCI grades "C", "D," and "E", the "C-E" group). In a transfer learning approach, an existing pretrained ConvNet was fine-tuned to provide models to recognize hip joints in VD pelvis images and to classify them according to their FCI score grouping. The results yielded two models. The first was successful in detecting hip joints in the VD pelvis images (intersection over union of 85%). The second yielded a sensitivity of 0.53, a specificity of 0.92, a positive predictive value of 0.91, and a negative predictive value of 0.81 for the classification of detected hip joints as being in the "C-E" group. ConvNets and transfer learning are applicable to veterinary imaging. The models obtained have potential to be a tool to aid in hip screening protocols if hip dysplasia classification performance was improved through access to more data and possibly by model optimization.


Assuntos
Aprendizado Profundo , Luxação do Quadril/veterinária , Articulação do Quadril/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Radiografia/veterinária , Animais , Luxação do Quadril/diagnóstico por imagem , Humanos , Programas de Rastreamento/veterinária , Valor Preditivo dos Testes
2.
Sci Adv ; 6(34): eabb5353, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32875113

RESUMO

Diagnostic imaging often outperforms the surgeon's ability to identify small structures during therapeutic procedures. Smart soft tissue markers that translate the sensitivity of diagnostic imaging into optimal therapeutic intervention are therefore highly warranted. This paper presents a unique adaptable liquid soft tissue marker system based on functionalized carbohydrates (Carbo-gel). The liquid state of these markers allows for high-precision placement under image guidance using thin needles. Based on step-by-step modifications, the image features and mechanical properties of markers can be optimized to bridge diagnostic imaging and specific therapeutic interventions. The performance of Carbo-gel is demonstrated for markers that (i) have radiographic, magnetic resonance, and ultrasound visibility; (ii) are palpable and visible; and (iii) are localizable by near-infrared fluorescence and radio guidance. The study demonstrates encouraging proof of concept for the liquid marker system as a well-tolerated multimodal imaging marker that can improve image-guided radiotherapy and surgical interventions, including robotic surgery.


Assuntos
Marcadores Fiduciais , Radioterapia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Agulhas , Imagens de Fantasmas , Radioterapia Guiada por Imagem/métodos
3.
Front Vet Sci ; 6: 428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850383

RESUMO

Digital radiography is widely seen to be forgiving of poor exposure technique and to provide consistent high quality diagnostic images. Optimal quality images are however not universal; sub-optimal images are encountered. Evaluators on hip dysplasia schemes encounter images from multiple practices produced on equipment from multiple manufacturers. For images submitted to the Danish Kennel Club for hip dysplasia screening, a range of quality is seen and the evaluators are of the impression that variations in image quality area associated with particular equipment. This study was undertaken to test the hypothesis that there is an association between image quality in digital radiography and the manufacturer of the detector equipment, and to demonstrate the applicability of visual grading analysis (VGA) for image quality evaluation in veterinary practice. Data from 16,360 digital images submitted to the Danish Kennel Club were used to generate the hypothesis that there is an association between detector manufacturer and image quality and to create groups for VGA. Image quality in a subset of 90 images randomly chosen from 6 manufacturers to represent high and low quality images, was characterized using VGA and the results used to test for an association between image quality and system manufacturer. The range of possible scores in the VGA was -2 to +2 (higher scores are better). The range of the VGA scores for the images in the low image quality group (n = 45) was -1.73 to +0.67, (median -1.2). Images in the high image quality group (n = 44) ranged from -1.52 to +0.53, (median -0.53). This difference was statistically significant (p < 0.001). The study shows an association between VGA scores of image quality and detector manufacturer. Possible causes may be that imaging hardware and/or software are not equal in terms of quality, that the level of support sought and given differs between systems, or a combination of the two. Clinicians purchasing equipment should be mindful that image quality can differ across systems. VGA is practical for veterinarians to compare image quality between systems or within a system over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...