Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(15): 3774-3785, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535706

RESUMO

The regeneration of bone defects that exceed 2 cm is a challenge for the human body, necessitating interventional therapies. Demineralized bone matrices (DBM) derived from biological tissues have been employed for bone regeneration and possess notable osteoinductive and osteoconductive characteristics. Nevertheless, their efficiency in regenerating critically sized injuries is limited, and therefore additional signaling cues are required. Thanks to the piezoelectric properties of the bone, external physical stimulation is shown to accelerate tissue healing. We have implanted human DBM in critically sized cranial bone defects in rat animal models and exposed them to an external magnetic field (1 T) to enhance endogenous bone formation. Our in vitro experiments showed the superior cytocompatibility of DBM compared to cell culture plates. Furthermore, alkaline phosphatase activity after 14 days and Alizarin red staining at 28 days demonstrated differentiation of rat bone marrow mesenchymal stem cells into bone lineage on DBM. Computer tomography images together with histological analyses showed that implanting DBM in the injured rats significantly enhanced bone regeneration. Notably, combining DBM transplantation with a 2 h daily exposure to a 1 T magnetic field for 2 weeks (day 7 to 21 post-surgery) significantly improved bone regeneration compared to DBM transplantation alone. This research indicates that utilizing external magnetic stimulation significantly enhances the potential of bone allografts to regenerate critically sized bone defects.


Assuntos
Matriz Óssea , Osso e Ossos , Ratos , Humanos , Animais , Regeneração Óssea , Osteogênese , Modelos Animais
2.
J Mater Chem B ; 12(10): 2511-2522, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334758

RESUMO

Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.


Assuntos
Meios de Contraste , Microbolhas , Camundongos , Animais , Ultrassonografia/métodos , Polímeros/química , Imagem Multimodal
3.
Chem Sci ; 14(43): 11941-11954, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969594

RESUMO

Ultrasound (US) is routinely used for diagnostic imaging and increasingly employed for therapeutic applications. Materials that act as cavitation nuclei can improve the resolution of US imaging, and facilitate therapeutic US procedures by promoting local drug delivery or allowing temporary biological barrier opening at moderate acoustic powers. Polymeric materials offer a high degree of control over physicochemical features concerning responsiveness to US, e.g. via tuning chain composition, length and rigidity. This level of control cannot be achieved by materials made of lipids or proteins. In this perspective, we present key engineered polymeric materials that respond to US, including microbubbles, gas-stabilizing nanocups, microcapsules and gas-releasing nanoparticles, and discuss their formulation aspects as well as their principles of US responsiveness. Focusing on microbubbles as the most common US-responsive polymeric materials, we further evaluate the available chemical toolbox to engineer polymer shell properties and enhance their performance in US imaging and US-mediated drug delivery. Additionally, we summarize emerging applications of polymeric microbubbles in molecular imaging, sonopermeation, and gas and drug delivery, based on refinement of MB shell properties. Altogether, this manuscript provides new perspectives on US-responsive polymeric designs, envisaging their current and future applications in US imaging and therapy.

4.
Adv Mater ; 35(52): e2308150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949438

RESUMO

Microbubbles (MB) are widely used for ultrasound (US) imaging and drug delivery. MB are typically spherically shaped, due to surface tension. When heated above their glass transition temperature, polymer-based MB can be mechanically stretched to obtain an anisotropic shape, endowing them with unique features for US-mediated blood-brain barrier (BBB) permeation. It is here shown that nonspherical MB can be surface-modified with BBB-specific targeting ligands, thereby promoting binding to and sonopermeation of blood vessels in the brain. Actively targeted rod-shaped MB are generated via 1D stretching of spherical poly(butyl cyanoacrylate) MB and via subsequently functionalizing their shell with antitransferrin receptor (TfR) antibodies. Using US and optical imaging, it is demonstrated that nonspherical anti-TfR-MB bind more efficiently to BBB endothelium than spherical anti-TfR-MB, both in vitro and in vivo. BBB-associated anisotropic MB produce stronger cavitation signals and markedly enhance BBB permeation and delivery of a model drug as compared to spherical BBB-targeted MB. These findings exemplify the potential of antibody-modified nonspherical MB for targeted and triggered drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Microbolhas , Receptores da Transferrina , Sonicação , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/metabolismo , Ligantes , Sistemas de Liberação de Medicamentos , Anticorpos , Animais , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular , Células Endoteliais/metabolismo
5.
ACS Biomater Sci Eng ; 8(3): 1258-1270, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35193354

RESUMO

While bone regenerates itself after an injury, a critical bone defect requires external interventions. Engineering approaches to restore bone provide a temporary scaffold to support the damage and provide beneficial biological cues for bone repair. Biomimetically generated scaffolds replicate the naturally occurring phenomena in bone regeneration. In this study, a gelatin-calcium phosphate nanocomposite was synthesized by an efficient and cost-effective double-diffusion biomimetic approach. Calcium and phosphate ions are impregnated in the gelatin, mimicking the natural bone mineralization process. Glutaraldehyde from 0.5 to 2 w/v% was used for gelatin cross-linking and mechanical properties of the scaffold, and its biological support for rat bone marrow mesenchymal stromal cells was analyzed. Analysis of scanning electron microscopy images of the nanocomposite scaffolds and Fourier transform infrared (FTIR) and X-ray diffraction (XRD) characterizations of these scaffolds confirmed precipitation of calcium phosphates in the gelatin. Moreover, lysozyme degradation assay showed that scaffold degradation reversely correlates with the concentration of the cross-linking agent. Increased glutaraldehyde concentrations enhanced the mechanical properties of the scaffolds, bringing them closer to those of cancellous bone. Rat bone marrow mesenchymal stromal cells maintained their viability on these scaffolds compared to standard cell culture plates. In addition, these cells showed differentiation into bone lineage as evaluated from alkaline phosphatase activity up to 21 days and Alizarin red staining of the cells over 28 days. Eventually, scaffolds were implanted in a cranial defect in a rat animal model with a 5 mm diameter. Bone regeneration was studied over 90 days. Analysis of histological sections of the injury and computer tomography images revealed that nanocomposite scaffolds cross-linked with 1% w/v glutaraldehyde provide the maximum bone regeneration after 90 days. Collectively, our data show that nanocomposite scaffolds developed here provide effective regeneration for extensive bone defects in vivo.


Assuntos
Gelatina , Nanocompostos , Animais , Biomimética , Gelatina/farmacologia , Glutaral/farmacologia , Modelos Animais , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...