Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 128(10): 4682-4696, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30198908

RESUMO

Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.


Assuntos
Poliaminas Biogênicas/biossíntese , Clofazimina/farmacologia , Mieloma Múltiplo , Proteínas de Neoplasias , Neoplasias Experimentais , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Cell Death Differ ; 25(6): 1040-1049, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463842

RESUMO

Oncogenic transcription factor FOXQ1 has been implicated in promotion of multiple transformed phenotypes in carcinoma cells. Recently, we have characterized FOXQ1 as a melanoma tumor suppressor that acts via repression of N-cadherin gene, and invasion and metastasis. Here we report that FOXQ1 induces differentiation in normal and transformed melanocytic cells at least partially via direct transcriptional activation of MITF gene, melanocytic lineage-specific regulator of differentiation. Importantly, we demonstrate that pigmentation induced in cultured melanocytic cells and in mice by activation of cAMP/CREB1 pathway depends in large part on FOXQ1. Moreover, our data reveal that FOXQ1 acts as a critical mediator of BRAFV600E-dependent regulation of MITF levels, thus providing a novel link between two major signal transduction pathways controlling MITF and differentiation in melanocytic cells.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Melanócitos/metabolismo , Melanoma/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Animais , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Melanócitos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Knockout , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Nat Methods ; 14(10): 1003-1009, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28869758

RESUMO

GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. We report the development and characterization of genetically encoded GTP sensors, which we constructed by inserting a circularly permuted yellow fluorescent protein (cpYFP) into a region of the bacterial G protein FeoB that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP created a series of sensors with a wide dynamic range. Critically, in mammalian cells the sensors showed consistent changes in ratiometric signal upon depletion or restoration of GTP pools. We show that these GTP evaluators (GEVALs) are suitable for detection of spatiotemporal changes in GTP levels in living cells and for high-throughput screening of molecules that modulate GTP levels.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Guanosina Trifosfato/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Guanosina Trifosfato/genética , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Mutação
4.
Mol Cell ; 53(6): 916-928, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24613345

RESUMO

Reactive oxygen species (ROS) activate NF-E2-related transcription factor 2 (Nrf2), a key transcriptional regulator driving antioxidant gene expression and protection from oxidant injury. Here, we report that in response to elevation of intracellular ROS above a critical threshold, Nrf2 stimulates expression of transcription Kruppel-like factor 9 (Klf9), resulting in further Klf9-dependent increases in ROS and subsequent cell death. We demonstrated that Klf9 independently causes increased ROS levels in various types of cultured cells and in mouse tissues and is required for pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Mechanistically, Klf9 binds to the promoters and alters the expression of several genes involved in the metabolism of ROS, including suppression of thioredoxin reductase 2, an enzyme participating in ROS clearance. Our data reveal an Nrf2-dependent feedforward regulation of ROS and identify Klf9 as a ubiquitous regulator of oxidative stress and lung injury.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Fibrose Pulmonar/genética , Animais , Sítios de Ligação , Bleomicina , Linhagem Celular Tumoral , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Luciferases/genética , Luciferases/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Células NIH 3T3 , Regiões Promotoras Genéticas , Ligação Proteica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio , Transdução de Sinais
5.
Cell Rep ; 5(2): 493-507, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24139804

RESUMO

Melanoma is one of the most aggressive types of human cancers, and the mechanisms underlying melanoma invasive phenotype are not completely understood. Here, we report that expression of guanosine monophosphate reductase (GMPR), an enzyme involved in de novo biosynthesis of purine nucleotides, was downregulated in the invasive stages of human melanoma. Loss- and gain-of-function experiments revealed that GMPR downregulates the amounts of several GTP-bound (active) Rho-GTPases and suppresses the ability of melanoma cells to form invadopodia, degrade extracellular matrix, invade in vitro, and grow as tumor xenografts in vivo. Mechanistically, we demonstrated that GMPR partially depletes intracellular GTP pools. Pharmacological inhibition of de novo GTP biosynthesis suppressed whereas addition of exogenous guanosine increased invasion of melanoma cells as well as cells from other cancer types. Our data identify GMPR as a melanoma invasion suppressor and establish a link between guanosine metabolism and Rho-GTPase-dependent melanoma cell invasion.


Assuntos
GMP Redutase/metabolismo , Melanoma/enzimologia , Nucleosídeos de Purina/biossíntese , Animais , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , GMP Redutase/antagonistas & inibidores , GMP Redutase/genética , Guanosina Trifosfato/metabolismo , Células HCT116 , Humanos , IMP Desidrogenase/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transplante Heterólogo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Am J Pathol ; 182(1): 142-51, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23245831

RESUMO

In normal human cells, oncogene-induced senescence (OIS) depends on induction of DNA damage response. Oxidative stress and hyperreplication of genomic DNA have been proposed as major causes of DNA damage in OIS cells. Here, we report that down-regulation of deoxyribonucleoside pools is another endogenous source of DNA damage in normal human fibroblasts (NHFs) undergoing HRAS(G12V)-induced senescence. NHF-HRAS(G12V) cells underexpressed thymidylate synthase (TS) and ribonucleotide reductase (RR), two enzymes required for the entire de novo deoxyribonucleotide biosynthesis, and possessed low dNTP levels. Chromatin at the promoters of the genes encoding TS and RR was enriched with retinoblastoma tumor suppressor protein and histone H3 tri-methylated at lysine 9. Importantly, ectopic coexpression of TS and RR or addition of deoxyribonucleosides substantially suppressed DNA damage, senescence-associated phenotypes, and proliferation arrest in two types of NHF-expressing HRAS(G12V). Reciprocally, short hairpin RNA-mediated suppression of TS and RR caused DNA damage and senescence in NHFs, although less efficiently than HRAS(G12V). However, overexpression of TS and RR in quiescent NHFs did not overcome proliferation arrest, suggesting that unlike quiescence, OIS requires depletion of dNTP pools and activated DNA replication. Our data identify a previously unknown role of deoxyribonucleotides in regulation of OIS.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Desoxirribonucleotídeos/metabolismo , Oncogenes/fisiologia , Proliferação de Células , Células Cultivadas , Senescência Celular/fisiologia , Replicação do DNA/genética , Desoxirribonucleotídeos/genética , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Ribonucleotídeo Redutases/biossíntese , Ribonucleotídeo Redutases/fisiologia , Timidilato Sintase/biossíntese , Timidilato Sintase/fisiologia
7.
Aging (Albany NY) ; 4(12): 917-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23249808

RESUMO

The down-regulation of dominant oncogenes, including C-MYC, in tumor cells often leads to the induction of senescence via mechanisms that are not completely identified. In the current study, we demonstrate that MYC-depleted melanoma cells undergo extensive DNA damage that is caused by the underexpression of thymidylate synthase (TS) and ribonucleotide reductase (RR) and subsequent depletion of deoxyribonucleoside triphosphate pools. Simultaneous genetic inhibition of TS and RR in melanoma cells induced DNA damage and senescence phenotypes very similar to the ones caused by MYC-depletion. Reciprocally, overexpression of TS and RR in melanoma cells or addition of deoxyribo-nucleosides to culture media substantially inhibited DNA damage and senescence-associated phenotypes caused by C-MYC depletion. Our data demonstrate the essential role of TS and RR in C-MYC-dependent suppression of senescence in melanoma cells.


Assuntos
Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Desoxirribonucleosídeos/farmacologia , Melanoma/enzimologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribonucleotídeo Redutases/metabolismo , Neoplasias Cutâneas/enzimologia , Timidilato Sintase/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Melanoma/genética , Melanoma/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Timidilato Sintase/genética , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/metabolismo
8.
Blood ; 119(6): 1450-8, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22144178

RESUMO

Bortezomib, a therapeutic agent for multiple myeloma (MM) and mantle cell lymphoma, suppresses proteosomal degradation leading to substantial changes in cellular transcriptional programs and ultimately resulting in apoptosis. Transcriptional regulators required for bortezomib-induced apoptosis in MM cells are largely unknown. Using gene expression profiling, we identified 36 transcription factors that displayed altered expression in MM cells treated with bortezomib. Analysis of a publically available database identified Kruppel-like family factor 9 (KLF9) as the only transcription factor with significantly higher basal expression in MM cells from patients who responded to bortezomib compared with nonresponders. We demonstrated that KLF9 in cultured MM cells was up-regulated by bortezomib; however, it was not through the induction of endoplasmic reticulum stress. Instead, KLF9 levels correlated with bortezomib-dependent inhibition of histone deacetylases (HDAC) and were increased by the HDAC inhibitor LBH589 (panobinostat). Furthermore, bortezomib induced binding of endogenous KLF9 to the promoter of the proapoptotic gene NOXA. Importantly, KLF9 knockdown impaired NOXA up-regulation and apoptosis caused by bortezomib, LBH589, or a combination of theses drugs, whereas KLF9 overexpression induced apoptosis that was partially NOXA-dependent. Our data identify KLF9 as a novel and potentially clinically relevant transcriptional regulator of drug-induced apoptosis in MM cells.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Borônicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Mieloma Múltiplo/genética , Pirazinas/farmacologia , Antineoplásicos/farmacologia , Western Blotting , Bortezomib , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Indóis , Fatores de Transcrição Kruppel-Like/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Panobinostat , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...