Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 44(11): 8465-8481, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34529560

RESUMO

Pretrained deep models hold their learnt knowledge in the form of model parameters. These parameters act as "memory" for the trained models and help them generalize well on unseen data. However, in absence of training data, the utility of a trained model is merely limited to either inference or better initialization towards a target task. In this paper, we go further and extract synthetic data by leveraging the learnt model parameters. We dub them Data Impressions, which act as proxy to the training data and can be used to realize a variety of tasks. These are useful in scenarios where only the pretrained models are available and the training data is not shared (e.g., due to privacy or sensitivity concerns). We show the applicability of data impressions in solving several computer vision tasks such as unsupervised domain adaptation, continual learning as well as knowledge distillation. We also study the adversarial robustness of lightweight models trained via knowledge distillation using these data impressions. Further, we demonstrate the efficacy of data impressions in generating data-free Universal Adversarial Perturbations (UAPs) with better fooling rates. Extensive experiments performed on benchmark datasets demonstrate competitive performance achieved using data impressions in absence of original training data.


Assuntos
Algoritmos , Aprendizado Profundo , Aprendizagem
2.
IEEE Trans Image Process ; 28(5): 2116-2125, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30452367

RESUMO

Deep convolutional neural networks (CNNs) have revolutionized the computer vision research and have seen unprecedented adoption for multiple tasks, such as classification, detection, and caption generation. However, they offer little transparency into their inner workings and are often treated as black boxes that deliver excellent performance. In this paper, we aim at alleviating this opaqueness of CNNs by providing visual explanations for the network's predictions. Our approach can analyze a variety of CNN-based models trained for computer vision applications, such as object recognition and caption generation. Unlike the existing methods, we achieve this via unraveling the forward pass operation. The proposed method exploits feature dependencies across the layer hierarchy and uncovers the discriminative image locations that guide the network's predictions. We name these locations CNN fixations, loosely analogous to human eye fixations. Our approach is a generic method that requires no architectural changes, additional training, or gradient computation, and computes the important image locations (CNN fixations). We demonstrate through a variety of applications that our approach is able to localize the discriminative image locations across different network architectures, diverse vision tasks, and data modalities.

3.
IEEE Trans Pattern Anal Mach Intell ; 41(10): 2452-2465, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30072314

RESUMO

Machine learning models are susceptible to adversarial perturbations: small changes to input that can cause large changes in output. It is also demonstrated that there exist input-agnostic perturbations, called universal adversarial perturbations, which can change the inference of target model on most of the data samples. However, existing methods to craft universal perturbations are (i) task specific, (ii) require samples from the training data distribution, and (iii) perform complex optimizations. Additionally, because of the data dependence, fooling ability of the crafted perturbations is proportional to the available training data. In this paper, we present a novel, generalizable and data-free approach for crafting universal adversarial perturbations. Independent of the underlying task, our objective achieves fooling via corrupting the extracted features at multiple layers. Therefore, the proposed objective is generalizable to craft image-agnostic perturbations across multiple vision tasks such as object recognition, semantic segmentation, and depth estimation. In the practical setting of black-box attack scenario (when the attacker does not have access to the target model and it's training data), we show that our objective outperforms the data dependent objectives to fool the learned models. Further, via exploiting simple priors related to the data distribution, our objective remarkably boosts the fooling ability of the crafted perturbations. Significant fooling rates achieved by our objective emphasize that the current deep learning models are now at an increased risk, since our objective generalizes across multiple tasks without the requirement of training data for crafting the perturbations. To encourage reproducible research, we have released the codes for our proposed algorithm.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...