Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338899

RESUMO

The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.


Assuntos
Hypocreales , MicroRNAs , Solanum lycopersicum , MicroRNAs/genética , MicroRNAs/metabolismo , Solanum lycopersicum/genética , Hypocreales/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala
2.
Microorganisms ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467428

RESUMO

This study examined the microbicidal activity of ultraviolet (UV)-C185-256-nm irradiance (robot 1) and ozone generated at UV-C185-nm by low-pressure mercury vapor lamps (robot 2) adapted to mobile robotic devices for surface decontamination, which was achieved in less than 1 h. Depending on their wall structure and outer envelopes, many microorganisms display different levels of resistance to decontaminating agents. Thus, the need for novel disinfection approaches is further exacerbated by the increased prevalence of multidrug-resistant bacteria, as well as the potential of novel microorganisms, with the ability to cause disease outbreaks. To set up a rapid and effective approach for microorganisms propagation prevention, we focused on the effects of UV-C and ozone on a distinct microorganism survival ratio. A set of microorganisms, including Escherichia coli, Micrococcus luteus, Saccharomyces cerevisiae, Trichoderma harzianum, and Bacillus subtilis, were used to evaluate the disinfection power of UV-C and UV-C plus ozone generating robots. UV-C disinfection can be suited to ad hoc tasks, is easy to operate, requires low maintenance, does not have the need for the storage of dangerous chemicals, and does not produce by-products that may affect human health and the environment. The robotic cumulative irradiation technology developed (fluence accumulated values of 2.28 and 3.62 mJ cm-2, for robot 1 and 2, respectively), together with the production of ozone (with a maximum peak of 0.43 ppm) capable of reaching UV-C shaded surfaces, and analyzed in the current study, despite being designed for the need to reduce the risk of epidemic outbreaks in real-life scenarios, represents a versatile tool that could be employed for air and surface disinfection within many circumstances that are faced daily.

3.
Microorganisms ; 8(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33081019

RESUMO

Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...