Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894143

RESUMO

The techniques that allow one to estimate measurements at the unsensed points of a system are known as virtual sensing. These techniques are useful for the implementation of condition monitoring systems in industrial equipment subjected to high cyclic loads that can cause fatigue damage, such as industrial presses. In this article, three different virtual sensing algorithms for strain estimation are tested using real measurement data obtained from a scaled bed press prototype: two deterministic algorithms (Direct Strain Observer and Least-Squares Strain Estimation) and one stochastic algorithm (Static Strain Kalman Filter). The prototype is subjected to cyclic loads using a hydraulic fatigue testing machine and is sensorized with strain gauges. Results show that sufficiently accurate strain estimations can be obtained using virtual sensing algorithms and a reduced number of strain gauges as input sensors when the monitored structure is subjected to static and quasi-static loads. Results also show that is possible to estimate the initiation of fatigue cracks at critical points of a structural component using virtual strain sensors.

2.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430622

RESUMO

Virtual sensing is the process of using available data from real sensors in combination with a model of the system to obtain estimated data from unmeasured points. In this article, different strain virtual sensing algorithms are tested using real sensor data, under unmeasured different forces applied in different directions. Stochastic algorithms (Kalman filter and augmented Kalman filter) and deterministic algorithms (least-squares strain estimation) are tested with different input sensor configurations. A wind turbine prototype is used to apply the virtual sensing algorithms and evaluate the obtained estimations. An inertial shaker is installed on the top of the prototype, with a rotational base, to generate different external forces in different directions. The results obtained in the performed tests are analyzed to determine the most efficient sensor configurations capable of obtaining accurate estimates. Results show that it is possible to obtain accurate strain estimations at unmeasured points of a structure under an unknown loading condition, using measured strain data from a set of points and a sufficiently accurate FE model as input and applying the augmented Kalman filter or the least-squares strain estimation in combination with modal truncation and expansion techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...