Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 429: 113910, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513170

RESUMO

Burmese pythons (Python molurus bivitattus) use a unique infrared (IR) targeting system to acquire prey, avoid predators and seek thermoregulatory sites through detection of IR energy in the environment. Previous studies of sensitivity of the python IR system that relied on analysis of complex, natural behaviors lacked robust, reliable responses in animals habituated to experiments, and in vitro electrophysiological study failed to test behavioral function of the implicated protein thermoreceptor, TRPA1. The present study used conditioned discrimination procedures to analyze behavioral sensitivity and signal transduction in the python IR system. Pythons trained to behaviorally discriminate thermal stimuli averaged 70% correct choices, but failed to make correct choices when pit organs were physically occluded with IR-blocking material. The pythons exhibited greater sensitivity to thermal stimuli than previously reported, evident by correct choices that exceeded chance in response to a 14 × 10-6 W cm-2 irradiance contrast, or 0.5 °C thermal differential. Finally, in a test of the behavioral role of the putative thermoreceptor protein TRPA1, despite pit organ treatment with a TRPA1 inhibitor, python performance exceeded chance and was similar to baseline discrimination and control trials. Collectively, the results suggest that the IR system is a high sensitivity, broad-spectrum thermosensor that may operate through different and/or multiple thermoreceptive proteins with overlapping spectral response profiles. The findings reported here provide a better understanding of the relationship between the brain, behavior and environment in driving survival and ecological success of the Burmese python, especially as an invasive megapredator in the southern United States.


Assuntos
Boidae , Animais , Boidae/fisiologia , Transdução de Sinais
2.
Anim Cogn ; 18(1): 269-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25139000

RESUMO

Large pythons and boas comprise a group of animals whose anatomy and physiology are very different from traditional mammalian, avian and other reptilian models typically used in operant conditioning. In the current study, investigators used a modified shaping procedure involving successive approximations to train wild Burmese pythons (Python molurus bivitattus) to approach and depress an illuminated push button in order to gain access to a food reward. Results show that these large, wild snakes can be trained to accept extremely small food items, associate a stimulus with such rewards via operant conditioning and perform a contingent operant response to gain access to a food reward. The shaping procedure produced robust responses and provides a mechanism for investigating complex behavioral phenomena in massive snakes that are rarely studied in learning research.


Assuntos
Boidae , Condicionamento Operante , Animais , Aprendizagem por Discriminação , Feminino , Masculino , Comportamento Predatório , Recompensa
3.
J Exp Biol ; 217(Pt 23): 4123-31, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25278470

RESUMO

It has been well established that homing pigeons are able to use the Earth's magnetic field to obtain directional information when returning to their loft and that their magnetic compass is based, at least in part, on the perception of magnetic inclination. Magnetic inclination has also been hypothesized in pigeons and other long-distance navigators, such as sea turtles, to play a role providing positional information as part of a map. Here we developed a behavioral paradigm which allows us to condition homing pigeons to discriminate magnetic inclination cues in a spatial-orientation arena task. Six homing pigeons were required to discriminate in a circular arena between feeders located either in a zone with a close to 0 deg inclination cue or in a zone with a rapidly changing inclination cue (-3 deg to +85 deg when approaching the feeder and +85 deg to -3 deg when moving away from the feeder) to obtain a food reward. The pigeons consistently performed this task above chance level. Control experiments, during which the coils were turned off or the current was running anti-parallel through the double-wound coil system, confirmed that no alternative cues were used by the birds in the discrimination task. The results show that homing pigeons can be conditioned to discriminate differences in magnetic field inclination, enabling investigation into the peripheral and central neural processing of geomagnetic inclination under controlled laboratory conditions.


Assuntos
Columbidae/fisiologia , Campos Magnéticos , Animais , Sinais (Psicologia) , Comportamento de Retorno ao Território Vital , Percepção Espacial
4.
PLoS One ; 8(9): e72869, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039812

RESUMO

It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.


Assuntos
Columbidae/fisiologia , Comportamento de Retorno ao Território Vital , Fenômenos Magnéticos , Animais , Campos Eletromagnéticos , Feminino , Masculino , Percepção Espacial
5.
J Exp Biol ; 215(Pt 19): 3379-87, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22735350

RESUMO

Considerable efforts have been made to investigate how homing pigeons (Columba livia f. domestica) are able to return to their loft from distant, unfamiliar sites while the mechanisms underlying navigation in familiar territory have received less attention. With the recent advent of global positioning system (GPS) data loggers small enough to be carried by pigeons, the role of visual environmental features in guiding navigation over familiar areas is beginning to be understood, yet, surprisingly, we still know very little about whether homing pigeons can rely on discrete, visual landmarks to guide navigation. To assess a possible role of discrete, visual landmarks in navigation, homing pigeons were first trained to home from a site with four wind turbines as salient landmarks as well as from a control site without any distinctive, discrete landmark features. The GPS-recorded flight paths of the pigeons on the last training release were straighter and more similar among birds from the turbine site compared with those from the control site. The pigeons were then released from both sites following a clock-shift manipulation. Vanishing bearings from the turbine site continued to be homeward oriented as 13 of 14 pigeons returned home. By contrast, at the control site the vanishing bearings were deflected in the expected clock-shift direction and only 5 of 13 pigeons returned home. Taken together, our results offer the first strong evidence that discrete, visual landmarks are one source of spatial information homing pigeons can utilize to navigate when flying over a familiar area.


Assuntos
Columbidae/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação/fisiologia , Animais , Feminino , Sistemas de Informação Geográfica , Masculino , Ohio , Fatores de Tempo
6.
Proc Biol Sci ; 276(1671): 3295-302, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19556255

RESUMO

How homing pigeons (Columba livia) return to their loft from distant, unfamiliar sites has long been a mystery. At many release sites, untreated birds consistently vanish from view in a direction different from the home direction, a phenomenon called the release-site bias. These deviations in flight direction have been implicated in the position determination (or map) step of navigation because they may reflect local distortions in information about location that the birds obtain from the geophysical environment at the release site. Here, we performed a post hoc analysis of the relationship between vanishing bearings and local variations in magnetic intensity using previously published datasets for pigeons homing to lofts in Germany. Vanishing bearings of both experienced and naïve birds were strongly associated with magnetic intensity variations at release sites, with 90 per cent of bearings lying within +/-29 degrees of the magnetic intensity slope or contour direction. Our results (i) demonstrate that pigeons respond in an orderly manner to the local structure of the magnetic field at release sites, (ii) provide a mechanism for the occurrence of release-site biases and (iii) suggest that pigeons may derive spatial information from the magnetic field at the release site that could be used to estimate their current position relative to their loft.


Assuntos
Columbidae/fisiologia , Planeta Terra , Geografia , Comportamento de Retorno ao Território Vital , Magnetismo , Animais , Modelos Teóricos
7.
Nature ; 432(7016): 508-11, 2004 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-15565156

RESUMO

Two conflicting hypotheses compete to explain how a homing pigeon can return to its loft over great distances. One proposes the use of atmospheric odours and the other the Earth's magnetic field in the 'map' step of the 'map and compass' hypothesis of pigeon homing. Although magnetic effects on pigeon orientation provide indirect evidence for a magnetic 'map', numerous conditioning experiments have failed to demonstrate reproducible responses to magnetic fields by pigeons. This has led to suggestions that homing pigeons and other birds have no useful sensitivity to the Earth's magnetic field. Here we demonstrate that homing pigeons (Columba livia) can discriminate between the presence and absence of a magnetic anomaly in a conditioned choice experiment. This discrimination is impaired by attachment of a magnet to the cere, local anaesthesia of the upper beak area, and bilateral section of the ophthalmic branch of the trigeminal nerve, but not of the olfactory nerve. These results suggest that magnetoreception (probably magnetite-based) occurs in the upper beak area of the pigeon. Traditional methods of rendering pigeons anosmic might therefore cause simultaneous impairment of magnetoreception so that future orientation experiments will require independent evaluation of the pigeon's magnetic and olfactory systems.


Assuntos
Migração Animal/fisiologia , Columbidae/fisiologia , Magnetismo , Percepção/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Comportamento de Escolha/fisiologia , Discriminação Psicológica/fisiologia , Planeta Terra , Modelos Biológicos , Nervo Olfatório/fisiologia , Nervo Olfatório/cirurgia , Orientação/fisiologia , Estimulação Física , Olfato/fisiologia , Nervo Trigêmeo/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...