RESUMO
Drought is a natural and recurrent phenomenon. It is considered 'a natural disaster' whenever it occurs in an intensive manner in highly populated regions, resulting in significant damage (material and human) and loss (socioeconomic). This paper presents the efforts developed to monitor the impact of drought in the semiarid region of Northeast Brazil. In this scope, information from different sources is compiled to support the evaluation and identification of impacted municipalities, with the main objective of supporting emergency actions to mitigate their impact. In the semiarid region of Brazil there are frequent occurrences of dry periods during the rainy season, which, depending on the intensity and duration, can cause significant damage to family-farmed crops, with a farming system characterized by low productivity indices. However, rain-fed agriculture has great economic expression and high social importance due to the region is densely occupied, and contributes to the establishment of communities in the countryside. Specifically, in the present study, the methodology adopted to monitor the impact of agricultural droughts, including an analysis of the hydrological year 2015-2016, is presented, considering different water stress indicators for the identification of the affected municipalities and assessment of the methods and tools developed.
RESUMO
This study discusses the climatological aspects of the most severe drought ever recorded in the semiarid region Northeast Brazil. Droughts are recurrent in the region and while El Nino has driven some of these events others are more dependent on the tropical North Atlantic sea surface temperature fields. The drought affecting this region during the last 5 years shows an intensity and impact not seen in several decades in the regional economy and society. The analysis of this event using drought indicators as well as meteorological fields shows that since the middle 1990s to 2016, 16 out of 25 years experienced rainfall below normal. This suggests that the recent drought may have in fact started in the middle-late 1990s, with the intense droughts of 1993 and 1998, and then the sequence of dry years (interrupted by relatively wet years in 2007, 2008, 2009 and 2011) after that may have affected the levels of reservoirs in the region, leading to a real water crisis that was magnified by the negative rainfall anomalies since 2010.
RESUMO
The processes of water transfer in the soil-plant-atmosphere system are strongly affected by soil use and management. Differences in the dynamics of soil water transfer between no-tillage (NT) and conventional tillage (CT) practices during a soybean (Glycine max) growing season in southern Brazil were assessed in this study. All the water balance components were analyzed during the soybean growing season (2009/2010). Rainfall, runoff, soil water storage and hydro-physical soil properties were analyzed under two tillage systems. The land-atmosphere water vapor exchanges, obtained from eddy covariance stations, were analyzed with regard to the soybean agroecosystem. Characterizations of soil water storage were also formulated in the 2006/2007 and 2008/2009 soybean growing seasons under the NT system. During the periods without rain, the soil water content under NT was greater than under CT. The soil superficial layer, more porous under NT, contributed to less runoff during rainy events. Moreover, under NT conditions the water supply was always high, between 0.2 - 0.5 m. The total evapotranspiration in the soybean agroecosystem growing season was 410.8 mm.(AU)
Assuntos
Estações do Ano , Análise do Solo , Glycine max , Evapotranspiração , Balanço HidrológicoRESUMO
The processes of water transfer in the soil-plant-atmosphere system are strongly affected by soil use and management. Differences in the dynamics of soil water transfer between no-tillage (NT) and conventional tillage (CT) practices during a soybean (Glycine max) growing season in southern Brazil were assessed in this study. All the water balance components were analyzed during the soybean growing season (2009/2010). Rainfall, runoff, soil water storage and hydro-physical soil properties were analyzed under two tillage systems. The land-atmosphere water vapor exchanges, obtained from eddy covariance stations, were analyzed with regard to the soybean agroecosystem. Characterizations of soil water storage were also formulated in the 2006/2007 and 2008/2009 soybean growing seasons under the NT system. During the periods without rain, the soil water content under NT was greater than under CT. The soil superficial layer, more porous under NT, contributed to less runoff during rainy events. Moreover, under NT conditions the water supply was always high, between 0.2 - 0.5 m. The total evapotranspiration in the soybean agroecosystem growing season was 410.8 mm.