Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 77(3): 1444-1451, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33128432

RESUMO

BACKGROUND: Plant extracts and isolated compounds are known for their insecticidal activity. The Aedes aegypti mosquito has a significant medical impact as it transmits a number of arboviruses and is able to develop resistance to the commercially available insecticides. This study investigates larvicidal compounds isolated from Machaerium acutifolium, designated by the Brazilian Forest Service as a sustainable species. RESULTS: A M. acutifolium trunk ethyl acetate extract was fractionated using chromatographic methods with full structural elucidation by mass spectrometry (MS), nuclear magnetic resonance and specific rotation analyses revealing: one new 3-arylcoumarin derivative 1; two flavonoids 2 and 3; a trans-stilbene 4, and an unprecedented natural indene 5. The larvicidal activity against Ae. aegypti after 24 h exposure was: crude extract (median lethal dose, LC50 205 mg L-1 ), fraction C (LC50 27 mg L-1 ) and 5 (LC50 24 mg L-1 ). CONCLUSION: A M. acutifolium extract showed larvicidal activity, which increased with prolonged exposure, demonstrating LC50 75 mg L-1 after 72 h. Although the flavonoids 2 and 3 and trans-stilbene 4 were deemed inactive according to the adopted mortality limit, additional tests revealed their ability to cause 65% Ae. aegypti larvae mortality, suggesting they could contribute to the larvicidal activity. Compound 5, identified by liquid chromatography-MS, was over eight-fold more toxic to larvae than the crude extract after 24 h. Therefore, 5 constitutes a structural model for new prototypes to control Ae. aegypti. These data reinforce the potential of natural products as a source of commercial alternatives for vector control strategies, respecting both sustainability and eco-friendly principles. © 2020 Society of Chemical Industry.


Assuntos
Aedes , Fabaceae , Inseticidas , Animais , Brasil , Inseticidas/análise , Larva , Mosquitos Vetores , Extratos Vegetais/farmacologia , Folhas de Planta/química
2.
PLoS One ; 15(11): e0241855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156835

RESUMO

Leishmaniasis is a disease impacting public health worldwide due to its high incidence, morbidity and mortality. Available treatments are costly, lengthy and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is warranted and natural products demonstrate promising activity. This study investigated the activity of Connarus suberosus extracts and compounds against Leishmania species. Several C. suberosus extracts were tested against L. amazonensis promastigotes. Active and inactive extracts were analyzed by UHPLC-MS and data evaluated using a metabolomics platform, revealing an unknown neoflavonoid (connarin, 3), isolated together with the pterocarpans: hemileiocarpin (1) and leiocarpin (2). The aforementioned compounds (1-3), together with the benzoquinones: rapanone (4), embelin (5) and suberonone (6) previously isolated by our group from the same species, were tested against: (i) L. amazonensis and L. infantum promastigotes, and (ii) L. amazonensis intracellular amastigotes, with the most active compound (3) also tested against L. infantum amastigotes. Cytotoxicity against murine peritoneal macrophages was also investigated. Compounds 2 and 3 presented an IC50 33.8 µM and 11.4 µM for L. amazonensis promastigotes; and 44.3 µM and 13.3 µM for L. infantum promastigotes, respectively. For L. amazonensis amastigotes, the IC50 of 2 was 20.4 µM with a selectivity index (SI) of 5.7, while the IC50 of 3 was 2.9 µM with an SI of 6.3. For L. infantum amastigotes, the IC50 of 3 was 7.7 µM. Compounds 2 and 3 presented activity comparable with the miltefosine positive control, with compound 3 found to be 2-4 times more active than the positive control, depending on the Leishmania species and form. The extracts and isolated compounds showed moderate toxicity against macrophages. Compounds 2 and 3 altered the mitochondrial membrane potential (ΔΨm) and neutral lipid body accumulation, while 2 also impacted plasma membrane permeabilization, culminating in cellular disorder and parasite death. Transmission electron microscopy of L. amazonensis promastigotes treated with compound 3 confirmed the presence of lipid bodies. Leiocarpin (2) and connarin (3) demonstrated antileishmanial activity. This study provides knowledge of natural products with antileishmanial activity, paving the way for prototype development to fight this neglected tropical disease.


Assuntos
Connaraceae/química , Flavonoides/farmacologia , Metabolômica/métodos , Extratos Vegetais/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/crescimento & desenvolvimento , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/parasitologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação
3.
J Chromatogr A ; 1114(2): 211-5, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16600261

RESUMO

A laboratory-made sorbent for solid-phase extraction (SPE) was obtained by thermal immobilization of poly(methyloctylsiloxane) (PMOS) onto silica. Cartridges packed with the new sorbent were used for the simultaneous determination of imazethapyr, nicosulfuron, diuron, linuron and chlorimuron-ethyl in water. These pesticides were separated and quantified using high-performance liquid chromatography with diode array detection (HPLC-DAD). The recoveries achieved with the laboratory-made PMOS cartridges were compared with those of some commercially available silica-based and polymer-based cartridges having C18, C8 and NH(2) pendant groups. Method validation using the laboratory-made sorbent was performed for the five pesticides at three fortifications levels (1x, 2x and 10x the limit of quantification of each pesticide). The laboratory-made PMOS cartridge has low cost preparation and showed good recoveries (72-111%) for all pesticides. Repeatability and intermediate precision were lower than 15%. Its performance was similar or even better, in some cases, than those of the commercial cartridges.


Assuntos
Praguicidas/isolamento & purificação , Polímeros/química , Dióxido de Silício/química , Siloxanas/química , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Chromatogr A ; 1073(1-2): 127-35, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15909514

RESUMO

Titanium oxide-modified silica was prepared by reaction of silica with titanium tetrabutoxide and then was used as support in the preparation of stationary phases with self-immobilized polybutadiene (PBD) and PBD immobilized through microwave radiation. Chromatographic performance of the stationary phases was evaluated in terms of the efficiency (plates/m), asymmetry (A(s)), retention factor (k) and resolution (R(s)) of two standard sample mixtures, one of then containing the basic compound N,N-dimethylaniline. A microwave irradiation of 30 min at 520 W gave the best efficiency (86,500 N m(-1)), greater than that of a 6-day self immobilized phase (69,500 N m(-1)). Self-immobilized stationary phases prepared with bare silica were also studied for comparison. These resulted in lower chromatographic performance, 43,800 N m(-1), when compared to the self-immobilized phase prepared with titanized silica.


Assuntos
Butadienos/química , Polímeros/química , Dióxido de Silício/química , Titânio/química , Elastômeros , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...