Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Chem Biol ; 74: 102282, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931022

RESUMO

The enzymatic breakdown of carbohydrates plays a critical role in several biological events and enables the development of sustainable processes to obtain bioproducts and biofuels. In this scenario, the design of efficient inhibitors for glycosidases that can act as drug targets and the engineering of carbohydrate-active enzymes with tailored catalytic properties is of remarkable importance. To guide rational approaches, it is necessary to elucidate enzyme molecular mechanisms, in particular understanding how the microenvironment modulates the conformational space explored by the substrate. Computer simulations, especially those based on ab initio methods, have provided a suitable atomic description of carbohydrate conformations and catalytic reactions in several glycosidase families. In this review, we will focus on how the active-site topology (pocket or cleft) and mode of cleavage (endo or exo) can affect the catalytic mechanisms adopted by glycosidases, in particular the substrate conformations along the reaction coordinate.


Assuntos
Carboidratos , Glicosídeo Hidrolases , Humanos , Glicosídeo Hidrolases/metabolismo , Configuração de Carboidratos , Domínio Catalítico , Açúcares
2.
Biochem Biophys Res Commun ; 645: 71-78, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36680939

RESUMO

Carbohydrate-binding modules (CBMs) constitute independently folded domains typically associated with carbohydrate-active enzymes (CAZymes). These modules are considered to have a rigid structure without notable conformational changes upon ligand binding, exhibiting a complementary topography in relation to the target carbohydrate. Herein, the high-resolution SAD-solved structure of a CBM from family 3 (BsCBM3) that binds to crystalline cellulose is reported in two crystalline forms. This module showed molecular plasticity with structural differences detected between the two crystalline forms and high RMSD values when compared to NMR ensemble of models. Pronounced structural variances were observed in the cellulose binding interface between NMR and XTAL structures, which were corroborated by molecular dynamics simulations. These findings support that family 3 CBMs targeting to cellulose are rather structurally dynamic modules than rigid entities, suggesting a potential role of conformational changes in polysaccharide recognition and modulation of enzyme activity.


Assuntos
Carboidratos , Celulose , Celulose/química , Carboidratos/química , Polissacarídeos , Simulação de Dinâmica Molecular , Ligação Proteica , Cristalografia por Raios X
3.
Artigo em Inglês | MEDLINE | ID: mdl-32500063

RESUMO

The glycoside hydrolase family 39 (GH39) is a functionally expanding family with limited understanding about the molecular basis for substrate specificity and extremophilicity. In this work, we demonstrate the key role of the positive-subsite region in modulating substrate affinity and how the lack of a C-terminal extension impacts on oligomerization and structural stability of some GH39 members. The crystallographic and SAXS structures of a new GH39 member from the phytopathogen Xanthomonas citri support the importance of an extended C-terminal to promote oligomerization as a molecular strategy to enhance thermal stability. Comparative structural analysis along with site-directed mutagenesis showed that two residues located at the positive-subsite region, Lys166 and Asp167, are critical to substrate affinity and catalytic performance, by inducing local changes in the active site for substrate binding. These findings expand the molecular understanding of the mechanisms involved in substrate recognition and structural stability of the GH39 family, which might be instrumental for biological insights, rational enzyme engineering and utilization in biorefineries.

4.
J Biol Chem ; 295(15): 5012-5021, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32139511

RESUMO

ß-Mannanases from the glycoside hydrolase 26 (GH26) family are retaining hydrolases that are active on complex heteromannans and whose genes are abundant in rumen metagenomes and metatranscriptomes. These enzymes can exhibit distinct modes of substrate recognition and are often fused to carbohydrate-binding modules (CBMs), resulting in a molecular puzzle of mechanisms governing substrate preference and mode of action that has not yet been pieced together. In this study, we recovered a novel GH26 enzyme with a CBM35 module linked to its N terminus (CrMan26) from a cattle rumen metatranscriptome. CrMan26 exhibited a preference for galactomannan as substrate and the crystal structure of the full-length protein at 1.85 Å resolution revealed a unique orientation of the ancillary domain relative to the catalytic interface, strategically positioning a surface aromatic cluster of the ancillary domain as an extension of the substrate-binding cleft, contributing to galactomannan preference. Moreover, systematic investigation of nonconserved residues in the catalytic interface unveiled that residues Tyr195 (-3 subsite) and Trp234 (-5 subsite) from distal negative subsites have a key role in galactomannan preference. These results indicate a novel and complex mechanism for substrate recognition involving spatially remote motifs, distal negative subsites from the catalytic domain, and a surface-associated aromatic cluster from the ancillary domain. These findings expand our molecular understanding of the mechanisms of substrate binding and recognition in the GH26 family and shed light on how some CBMs and their respective orientation can contribute to substrate preference.


Assuntos
Mananas/metabolismo , Manosidases/química , Manosidases/metabolismo , Metagenoma , Mutação , Rúmen/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Domínio Catalítico , Bovinos , Cristalografia por Raios X , Galactose/análogos & derivados , Hidrólise , Manosidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Filogenia , Ligação Proteica , Homologia de Sequência , Especificidade por Substrato
5.
Biotechnol Bioeng ; 116(4): 734-744, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556897

RESUMO

Rational design is an important tool for sculpting functional and stability properties of proteins and its potential can be much magnified when combined with in vitro and natural evolutionary diversity. Herein, we report the structure-guided design of a xylose-releasing exo-ß-1,4-xylanase from an inactive member of glycoside hydrolase family 43 (GH43). Structural analysis revealed a nonconserved substitution (Lys247 ) that results in the disruption of the hydrogen bond network that supports catalysis. The mutation of this residue to a conserved serine restored the catalytic activity and crystal structure elucidation of the mutant confirmed the recovery of the proper orientation of the catalytically relevant histidine. Interestingly, the tailored enzyme can cleave both xylooligosaccharides and xylan, releasing xylose as the main product, being the first xylose-releasing exo-ß-1,4-xylanase reported in the GH43 family. This enzyme presents a unique active-site topology when compared with closely related ß-xylosidases, which is the absence of a hydrophobic barrier at the positive-subsite region, allowing the accommodation of long substrates. Therefore, the combination of rational design for catalytic activation along with naturally occurring differences in the substrate binding interface led to the discovery of a novel activity within the GH43 family. In addition, these results demonstrate the importance of solvation of the ß-propeller hollow for GH43 catalytic function and expand our mechanistic understanding about the diverse modes of action of GH43 members, a key and polyspecific carbohydrate-active enzyme family abundant in most plant cell-wall-degrading microorganisms.


Assuntos
Bacillus licheniformis/enzimologia , Xilose/metabolismo , Xilosidases/genética , Xilosidases/metabolismo , Bacillus licheniformis/química , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Especificidade por Substrato , Xilosidases/química
6.
Biotechnol Biofuels ; 11: 223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127853

RESUMO

BACKGROUND: Arabinoxylan is an abundant polysaccharide in industrially relevant biomasses such as sugarcane, corn stover and grasses. However, the arabinofuranosyl di-substitutions that decorate the xylan backbone are recalcitrant to most known arabinofuranosidases (Abfs). RESULTS: In this work, we identified a novel GH51 Abf (XacAbf51) that forms trimers in solution and can cope efficiently with both mono- and di-substitutions at terminal or internal xylopyranosyl units of arabinoxylan. Using mass spectrometry, the kinetic parameters of the hydrolysis of 33-α-l-arabinofuranosyl-xylotetraose and 23,33-di-α-l-arabinofuranosyl-xylotetraose by XacAbf51 were determined, demonstrating the capacity of this enzyme to cleave arabinofuranosyl linkages of internal mono- and di-substituted xylopyranosyl units. Complementation studies of fungal enzyme cocktails with XacAbf51 revealed an increase of up to 20% in the release of reducing sugars from pretreated sugarcane bagasse, showing the biotechnological potential of a generalist GH51 in biomass saccharification. To elucidate the structural basis for the recognition of internal di-substitutions, the crystal structure of XacAbf51 was determined unveiling the existence of a pocket strategically arranged near to the - 1 subsite that can accommodate a second arabinofuranosyl decoration, a feature not described for any other GH51 Abf structurally characterized so far. CONCLUSIONS: In summary, this study reports the first kinetic characterization of internal di-substitution release by a GH51 Abf, provides the structural basis for this activity and reveals a promising candidate for industrial processes involving plant cell wall depolymerization.

7.
J Biol Chem ; 293(35): 13636-13649, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29997257

RESUMO

The classical microbial strategy for depolymerization of ß-mannan polysaccharides involves the synergistic action of at least two enzymes, endo-1,4-ß-mannanases and ß-mannosidases. In this work, we describe the first exo-ß-mannanase from the GH2 family, isolated from Xanthomonas axonopodis pv. citri (XacMan2A), which can efficiently hydrolyze both manno-oligosaccharides and ß-mannan into mannose. It represents a valuable process simplification in the microbial carbon uptake that could be of potential industrial interest. Biochemical assays revealed a progressive increase in the hydrolysis rates from mannobiose to mannohexaose, which distinguishes XacMan2A from the known GH2 ß-mannosidases. Crystallographic analysis indicates that the active-site topology of XacMan2A underwent profound structural changes at the positive-subsite region, by the removal of the physical barrier canonically observed in GH2 ß-mannosidases, generating a more open and accessible active site with additional productive positive subsites. Besides that, XacMan2A contains two residue substitutions in relation to typical GH2 ß-mannosidases, Gly439 and Gly556, which alter the active site volume and are essential to its mode of action. Interestingly, the only other mechanistically characterized mannose-releasing exo-ß-mannanase so far is from the GH5 family, and its mode of action was attributed to the emergence of a blocking loop at the negative-subsite region of a cleft-like active site, whereas in XacMan2A, the same activity can be explained by the removal of steric barriers at the positive-subsite region in an originally pocket-like active site. Therefore, the GH2 exo-ß-mannanase represents a distinct molecular route to this rare activity, expanding our knowledge about functional convergence mechanisms in carbohydrate-active enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Xanthomonas/metabolismo , beta-Manosidase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Cinética , Mananas/metabolismo , Manose/metabolismo , Modelos Moleculares , Conformação Proteica , Espalhamento a Baixo Ângulo , Alinhamento de Sequência , Especificidade por Substrato , Difração de Raios X , Xanthomonas/química , Xanthomonas/enzimologia , beta-Manosidase/química
8.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 569-579, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29454992

RESUMO

The Amazon region holds most of the biological richness of Brazil. Despite their ecological and biotechnological importance, studies related to microorganisms from this region are limited. Metagenomics leads to exciting discoveries, mainly regarding non-cultivable microorganisms. Herein, we report the discovery of a novel ß-glucosidase (glycoside hydrolase family 1) gene from a metagenome from Lake Poraquê in the Amazon region. The gene encodes a protein of 52.9 kDa, named AmBgl-LP, which was recombinantly expressed in Escherichia coli and biochemically and structurally characterized. Although AmBgl-LP hydrolyzed the synthetic substrate p-nitrophenyl-ß-d-glucopyranoside (pNPßG) and the natural substrate cellobiose, it showed higher specificity for pNPßG (kcat/Km = 6 s-1·mM-1) than cellobiose (kcat/Km = 0.6 s-1·mM-1). AmBgl-LP showed maximum activity at 40 °C and pH 6.0 when pNPßG was used as the substrate. Glucose is a competitive inhibitor of AmBgl-LP, presenting a Ki of 14 mM. X-ray crystallography and Small Angle X-ray Scattering were used to determine the AmBgl-LP three-dimensional structure and its oligomeric state. Interestingly, despite sharing similar active site architecture with other structurally characterized GH1 family members which are monomeric, AmBgl-LP forms stable dimers in solution. The identification of new GH1 members by metagenomics might extend our understanding of the molecular mechanisms and diversity of these enzymes, besides enabling us to survey their industrial applications.


Assuntos
Lagos/microbiologia , Metagenoma , Microbiologia da Água , beta-Glucosidase/química , Brasil , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-23545647

RESUMO

Tryparedoxin peroxidase (TXNPx) is an essential constituent of the main enzymatic scavenger system for reactive oxygen species (ROS) in trypanosomatids. Genetic studies have demonstrated the importance of this system for the development and virulence of these parasites, representing a potential target for the discovery of new trypanocidal drugs. In this work, the mitochondrial TXNPx from Leishmania braziliensis was cloned, overexpressed, purified and crystallized. The crystals diffracted to 3.3 Å resolution and belonged to space group P4(2)2(1)2, with unit-cell parameters a = b = 131.8, c = 44.4 Å. These studies will contribute to a better understanding of the molecular mechanisms involved in ROS detoxification by trypanosomatids.


Assuntos
Leishmania braziliensis/enzimologia , Peroxidases/química , Proteínas de Protozoários/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Expressão Gênica , Mitocôndrias/enzimologia , Peroxidases/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...