Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ASN Neuro ; 15: 17590914231153481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714975

RESUMO

Central nervous system tumors, especially astrocytomas, are the solid neoplasms with the highest incidence and mortality rates in childhood. The diagnosis is based on histopathological characteristics, but molecular methods have been increasingly used. Translationally controlled tumor protein (TCTP) protein, encoded by the tumor protein, translationally controlled 1 (TPT1) gene, is a multifunctional protein with an important physiological role in the cell cycle. Expression of this protein has been associated with several neoplasms, including astrocytomas in adults. However, the role of this protein in pediatric astrocytomas is largely unknown. We aim to evaluate in cases of pediatric astrocytomas, the frequency of polymorphisms in the TPT1 gene and other genes associated with its molecular pathways, such as MTOR, MDM2, TP53, and CDKN1A, correlating it with protein expression and clinical variables, in formalin-fixed, paraffin-embedded (FFPE) samples. These samples were submitted to genotyping and immunohistochemistry analyses. The most revealing results refer to the MDM2 gene, rs117039649 [G/C], in which C polymorphic allele was observed only in the glioblastomas (p = .028). The CDKN1A gene, rs3176334 [T/C] presented a homozygous polymorphic genotype only in high-grade astrocytomas, when infiltrating tumors were compared (p = .039). The immunohistochemical expression of cytoplasmic MDM2 correlated with better survival rates in patients with glioblastoma (p = .018). The presence of polymorphisms in the MDM2 and CDKN1A genes, as well as a specific correlation between MDM2 expression, suggests a likely association with risk in pediatric astrocytomas. This study sought the probable role involved in the TCTP pathway, and associated proteins, in the tumorigenesis of pediatric astrocytomas, and some could have potential impact as prognostic markers in these patients.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Proteína Tumoral 1 Controlada por Tradução , Criança , Humanos , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Genótipo , Polimorfismo Genético , Proteína Tumoral 1 Controlada por Tradução/genética
2.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361818

RESUMO

The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease's mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1ß, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , Inflamassomos/metabolismo , SARS-CoV-2 , Interleucina-18 , NF-kappa B/metabolismo , Enzima de Conversão de Angiotensina 2 , Autopsia , Vírus da Influenza A Subtipo H1N1/metabolismo , Caspase 1/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Biópsia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
J Child Neurol ; 37(6): 534-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35450457

RESUMO

BACKGROUND: Embryonic stem cell markers, such as SOX2, NANOG, and OCT4, are transcription factors expressed in pluripotent stem cells, involved in the mediation of pluripotency and self-renewal. Especially after the discovery of cancer stem cells, these proteins have been associated with several types of neoplasia, including astrocytomas. In the pediatric population, astrocytomas are the most common solid neoplasia and present the highest mortality rates. METHODS: Our study evaluated 5 polymorphisms in SOX2, NANOG, and POU5F1 genes in 101 pediatric astrocytoma samples. RESULTS: We describe the associations between wild and polymorphic alleles in astrocytomas. CONCLUSIONS: In our results, the intronic polymorphic G allele in SOX2 rs77677339 [G/A] had a borderline association with low-grade astrocytomas, and the intronic polymorphic T allele in NANOG rs10845877 [C/T] showed a higher frequency in grade 2, compared to grade 1 astrocytomas, thus showing promising results. IMPACT: Our study is relevant because it shows a potential correlation between polymorphic embryonic stem cell marker genes and pediatric astrocytomas.


Assuntos
Astrocitoma , Proteína Homeobox Nanog , Fatores de Transcrição SOXB1 , Astrocitoma/genética , Criança , Células-Tronco Embrionárias/metabolismo , Humanos , Proteína Homeobox Nanog/genética , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...