Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33609137

RESUMO

Rock phosphate is an alternative form of phosphorus (P) fertilizer; however, there is no information regarding the influence of P fertilizer sources in Brazilian Cerrado soils upon microbial genes coding for phosphohydrolase enzymes in crop rhizospheres. Here, we analyze a field experiment comparing maize and sorghum grown under different P fertilization (rock phosphate and triple superphosphate) upon crop performance, phosphatase activity and rhizosphere microbiomes at three levels of diversity: small subunit rRNA marker genes of bacteria, archaea and fungi; a suite of alkaline and acid phosphatase and phytase genes; and ecotypes of individual genes. We found no significant difference in crop performance between the fertilizer sources, but the accumulation of fertilizer P into pools of organic soil P differed. Phosphatase activity was the only biological parameter influenced by P fertilization. Differences in rhizosphere microbiomes were observed at all levels of biodiversity due to crop type, but not fertilization. Inspection of phosphohydrolase gene ecotypes responsible for differences between the crops suggests a role for lateral genetic transfer in establishing ecotype distributions. Moreover, they were not reflected in microbial community composition, suggesting that they confer competitive advantage to individual cells rather than species in the sorghum rhizosphere.


Assuntos
Fósforo , Rizosfera , Brasil , Fertilização , Monoéster Fosfórico Hidrolases , Filogenia , Solo , Microbiologia do Solo
2.
Funct Plant Biol ; 39(11): 925-935, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480842

RESUMO

Phosphorus (P) is an essential nutrient for plants and is acquired from the rhizosphere solution as inorganic phosphate. P is one of the least available mineral nutrients, particularly in highly weathered, tropical soils, and can substantially limit plant growth. The aim of this work was to study a possible effect of root morphology and the expression pattern of related candidate genes on P efficiency in maize. Our field phenotyping results under low and high P conditions enabled us to identify two contrasting genotypes for P acquisition efficiency that were used for the root traits studies. Root morphology was assessed in a paper pouch system to investigate root traits that could be involved in P acquisition efficiency. The genes, Rtcs, Bk2 and Rth3, which are known to be involved in root morphology, showed higher expression in the P efficient line relative to the P inefficient line. Overall, root traits showed high heritability and a low coefficient of variation. Principal component analysis revealed that out of the 24 root traits analysed, only four root traits were needed to adequately represent the diversity among genotypes. The information generated by this study will be useful for establishing early selection strategies for P efficiency in maize, which are needed to support subsequent molecular and physiological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...