Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 205(3): 34-43, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753894

RESUMO

RCK (regulating conductance of K+) domains are common regulatory domains that control the activity of eukaryotic and prokaryotic K+ channels and transporters. In bacteria these domains play roles in osmoregulation, regulation of turgor and membrane potential and in pH homeostasis. Whole-genome sequencing unveiled RCK gene redundancy, however the biological role of this redundancy is not well understood. In Bacillus subtilis, there are two closely related RCK domain proteins (KtrA and KtrC) that regulate the activity of the Ktr cation channels. KtrA has been well characterized but little is known about KtrC. We have characterized the structural and biochemical proprieties of KtrC and conclude that KtrC binds ATP and ADP, just like KtrA. However, in solution KtrC exist in a dynamic equilibrium between octamers and non-octameric species that is dependent on the bound ligand, with ATP destabilizing the octameric ring relative to ADP. Accordingly, KtrC-ADP crystal structures reveal closed octameric rings similar to those in KtrA, while KtrC-ATP adopts an open assembly with RCK domains forming a super-helix. In addition, both KtrC-ATP and -ADP octamers are stabilized by the signaling molecule cyclic-di-AMP, which binds to KtrC with high affinity. In contrast, c-di-AMP binds with 100-fold lower affinity to KtrA. Despite these differences we show with an E. coli complementation assay that KtrC and KtrA are interchangeable and able to form functional transporters with both KtrB and KtrD. The distinctive properties of KtrC, in particular ligand-dependent assembly/disassembly, suggest that this protein has a specific physiological role that is distinct from KtrA.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Bacillus subtilis/química , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Potássio/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Cátions Monovalentes , Clonagem Molecular , Cristalografia por Raios X , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Transporte de Íons , Modelos Moleculares , Potássio/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Structure ; 24(10): 1742-1754, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27618660

RESUMO

The human EAG1 potassium channel belongs to the superfamily of KCNH voltage-gated potassium channels that have roles in cardiac repolarization and neuronal excitability. EAG1 is strongly inhibited by Ca2+/calmodulin (CaM) through a mechanism that is not understood. We determined the binding properties of CaM with each one of three previously identified binding sites (BDN, BDC1, and BDC2), analyzed binding to protein stretches that include more than one site, and determined the effect of neighboring globular domains on the binding properties. The determination of the crystal structure of CaM bound to BDC2 shows the channel fragment interacting with only the C lobe of calmodulin and adopting an unusual bent conformation. Based on this structure and on a functional and biochemical analysis of mutants, we propose a model for the mechanism of inhibition whereby the local conformational change induced by CaM binding at BDC2 lies at the basis of channel modulation.


Assuntos
Calmodulina/metabolismo , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Sítios de Ligação , Calmodulina/química , Cristalografia por Raios X , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica
3.
Artigo em Inglês | MEDLINE | ID: mdl-22442238

RESUMO

The members of the family of voltage-gated KCNH potassium channels play important roles in cardiac and neuronal repolarization, tumour proliferation and hormone secretion. These channels have a C-terminal cytoplasmic domain which is homologous to cyclic nucleotide-binding domains (CNB-homology domains), but it has been demonstrated that channel function is not affected by cyclic nucleotides and that the domain does not bind nucleotides in vitro. Here, the crystallization and preliminary crystallographic analysis of a CNB-homology domain from a member of the KCNH family, the mouse EAG channel, is reported. X-ray diffraction data were collected to 2.2 Å resolution and the crystal belonged to the hexagonal space group P3(1)21.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Animais , Cristalização , Cristalografia por Raios X , Camundongos
5.
Artigo em Inglês | MEDLINE | ID: mdl-20823525

RESUMO

Per-Arnt-Sim (PAS) domains are ubiquitous in nature; they are approximately 130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported.


Assuntos
Proteínas de Drosophila/química , Drosophila melanogaster/química , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio/química , Animais , Cristalização , Cristalografia por Raios X , Camundongos , Estrutura Terciária de Proteína
6.
Cell ; 126(6): 1147-59, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16990138

RESUMO

The KtrAB ion transporter is a complex of the KtrB membrane protein and KtrA, an RCK domain. RCK domains regulate eukaryotic and prokaryotic membrane proteins involved in K(+) transport. Conflicting functional models have proposed two different oligomeric arrangements for RCK domains, tetramer versus octamer. Our results for the KtrAB RCK domain clearly show an octamer in solution and in the crystal. We determined the structure of this protein in three different octameric ring conformations that resemble the RCK-domain octamer observed in the MthK potassium channel but show striking differences in size and symmetry. We present experimental evidence for the association between one RCK octameric ring and two KtrB membrane proteins. These results provide insights into the quaternary organization of the KtrAB transporter and its mechanism of activation and show that the RCK-domain octameric ring model is generally applicable to other ion-transport systems.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Membrana Celular/metabolismo , Proteínas de Membrana/química , Potássio/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...