RESUMO
Agricultural yield is the result of multiple factors and ecological processes (e.g., pollination, fertilization, pest control). Understanding how the different factors interact is fundamental to designing management practices aimed to increase these yields, which are environmental friendly and sustainable over time. In this study, we focus on insect pollination and plant nutrition status, since they are two key factors that influence crop yield. The study was carried out in Northwest Patagonia Argentina, which is an area of intensive production of pears and apples of global importance, during the harvest seasons 2018 and 2019. The plant nutrition was estimated from leaf chlorophyll content. Biotic pollination benefits were evaluated by comparing fruit quantity (fruit to flower ratio) and quality (weight, size, and sugar concentration) from approximately 25 flowers exposed to pollinators and 25 flowers excluded to them per tree (a total of 160 apple trees and 130 pear trees). In addition, we estimated the visitation rate of pollinators to flowers and related it to fruit quality in apple. Despite different floral characteristics, we found in both crops a positive effect of insect pollination in both the quantity and the quality of the fruits. Interestingly, the nutrition of the trees, although variable, did not affect either the quantity or the quality of the fruits. Despite the weak effect of nutrition, we found no interaction between pollination and plant nutrition (i.e., additive effects). These results highlight the importance of agricultural practices that promote pollinators on farms.
Assuntos
Insetos/classificação , Malus , Valor Nutritivo , Polinização , Pyrus , Animais , Argentina , Produtos Agrícolas , Flores , Frutas , Insetos/fisiologia , Plantas DaninhasRESUMO
Pollen limitation can strongly influence reproduction of pollinator-dependent plants. Flower abundance can affect pollination 'quantity' and 'quality' due to its influence on pollen availability and foraging patterns of pollinators, ultimately impacting on seed production. We complemented individual-based measurements with landscape-level metrics to assess the influence of conspecific flower availability at different spatial scales on the quantity and quality components of pollination, and their impact on seed production in the invasive shrub Cytisus scoparius. In 2013-2014, we sampled 40 C. scoparius populations in Nahuel Huapi National Park, Patagonia (Argentina). In each population, we estimated the proportion of tripped flowers, fruit- and seed-set in five randomly selected individuals. The proportion of tripped flowers and the proportion of them setting fruit were used as proxies of pollination quantity and quality, respectively. Conspecific flower availability at distinct spatial scales (5-1000 m) was estimated as the area covered by flowering C. scoparius from color aerial photographs. Flower availability influenced seed output due to contrasting scale-dependent effects on pollination quantity and quality. Increasing flower availability at the landscape-scale reduced pollination quantity, whereas at the neighborhood-scale it increased pollination quality. The overall positive effect of flower availability on seed output at the neighborhood scale was slightly higher than the overall negative effect at the landscape scale. Moreover, pollination quality had a higher positive effect on seed output than pollination quantity. Our results demonstrate that pollination quality may severely limit plant reproduction. Pollination quality limitation can act independently of pollination quantity limitation because these factors operate at different spatial scales.