Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JGH Open ; 8(4): e13061, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617108

RESUMO

Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is the third most common cause of AP after gallstones and alcohol. Supportive measures, intravenous insulin, and plasmapheresis are possible treatment modalities for HTG-AP; however, definitive guidelines evaluating the best therapeutic approach are not clearly established. We present a rare case of a 42-year-old male without known comorbidities who was found to have HTG-AP. Despite early initiation of intravenous insulin and plasmapheresis and the initial decline in his triglycerides level, his condition was complicated by necrotizing pancreatitis and subsequent multi-organ failure. Future studies are warranted to evaluate the role of plasmapheresis in HTG-AP and its efficacy.

2.
J Neurosci ; 43(47): 8043-8057, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37722850

RESUMO

The malignant brain cancer glioblastoma (GBM) contains groups of highly invasive cells that drive tumor progression as well as recurrence after surgery and chemotherapy. The molecular mechanisms that enable these GBM cells to exit the primary mass and disperse throughout the brain remain largely unknown. Here we report using human tumor specimens and primary spheroids from male and female patients that glial cell adhesion molecule (GlialCAM), which has normal roles in brain astrocytes and is mutated in the developmental brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC), is differentially expressed in subpopulations of GBM cells. High levels of GlialCAM promote cell-cell adhesion and a proliferative GBM cell state in the tumor core. In contrast, GBM cells with low levels of GlialCAM display diminished proliferation and enhanced invasion into the surrounding brain parenchyma. RNAi-mediated inhibition of GlialCAM expression leads to activation of proinvasive extracellular matrix adhesion and signaling pathways. Profiling GlialCAM-regulated genes combined with cross-referencing to single-cell transcriptomic datasets validates functional links among GlialCAM, Mlc1, and aquaporin-4 in the invasive cell state. Collectively, these results reveal an important adhesion and signaling axis comprised of GlialCAM and associated proteins including Mlc1 and aquaporin-4 that is critical for control of GBM cell proliferation and invasion status in the brain cancer microenvironment.SIGNIFICANCE STATEMENT Glioblastoma (GBM) contains heterogeneous populations of cells that coordinately drive proliferation and invasion. We have discovered that glial cell adhesion molecule (GlialCAM)/hepatocyte cell adhesion molecule (HepaCAM) is highly expressed in proliferative GBM cells within the tumor core. In contrast, GBM cells with low levels of GlialCAM robustly invade into surrounding brain tissue along blood vessels and white matter. Quantitative RNA sequencing identifies various GlialCAM-regulated genes with functions in cell-cell adhesion and signaling. These data reveal that GlialCAM and associated signaling partners, including Mlc1 and aquaporin-4, are key factors that determine proliferative and invasive cell states in GBM.


Assuntos
Aquaporinas , Glioblastoma , Feminino , Humanos , Masculino , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Membrana/metabolismo , Microambiente Tumoral , Proliferação de Células , Invasividade Neoplásica
3.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36960827

RESUMO

The blood-brain barrier (BBB) is a vascular endothelial cell boundary that partitions the circulation from the central nervous system to promote normal brain health. We have a limited understanding of how the BBB is formed during development and maintained in adulthood. We used quantitative transcriptional profiling to investigate whether specific adhesion molecules are involved in BBB functions, with an emphasis on understanding how astrocytes interact with endothelial cells. Our results reveal a striking enrichment of multiple genes encoding laminin subunits as well as the laminin receptor gene Itga7, which encodes the alpha7 integrin subunit, in astrocytes. Genetic ablation of Itga7 in mice led to aberrant BBB permeability and progressive neurological pathologies. Itga7-/- mice also showed a reduction in laminin protein expression in parenchymal basement membranes. Blood vessels in the Itga7-/- brain showed separation from surrounding astrocytes and had reduced expression of the tight junction proteins claudin 5 and ZO-1. We propose that the alpha7 integrin subunit in astrocytes via adhesion to laminins promotes endothelial cell junction integrity, all of which is required to properly form and maintain a functional BBB.


Assuntos
Astrócitos , Barreira Hematoencefálica , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Laminina/metabolismo , Células Endoteliais/metabolismo , Integrinas/metabolismo , Junções Íntimas/metabolismo
4.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217866

RESUMO

In the developing mammalian brain, neuroepithelial cells interact with blood vessels to regulate angiogenesis, blood-brain barrier maturation and other key neurovascular functions. Genetic studies in mice have shown that neurovascular development is controlled, in part, by Itgb8, which encodes the neuroepithelial cell-expressed integrin ß8 subunit. However, these studies have involved complete loss-of-function Itgb8 mutations, and have not discerned the relative roles for the ß8 integrin extracellular matrix (ECM) binding region versus the intracellular signaling tail. Here, Cre/lox strategies have been employed to selectively delete the cytoplasmic tail of murine Itgb8 without perturbing its transmembrane and extracellular domains. We report that the ß8 integrin cytoplasmic domain is essential for inside-out modulation of adhesion, including activation of latent-TGFßs in the ECM. Quantitative sequencing of the brain endothelial cell transcriptome identifies TGFß-regulated genes with putative links to blood vessel morphogenesis, including several genes linked to Wnt/ß-catenin signaling. These results reveal that the ß8 integrin cytoplasmic domain is essential for the regulation of TGFß-dependent gene expression in endothelial cells and suggest that cross-talk between TGFßs and Wnt pathways is crucial for neurovascular development.


Assuntos
Células Endoteliais , Cadeias beta de Integrinas , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Mamíferos/metabolismo , Camundongos , Fator de Crescimento Transformador beta/metabolismo
5.
J Neurosci ; 42(8): 1406-1416, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34965971

RESUMO

In the mammalian brain, perivascular astrocytes (PAs) closely juxtapose blood vessels and are postulated to have important roles in the control of vascular physiology, including regulation of the blood-brain barrier (BBB). Deciphering specific functions for PAs in BBB biology, however, has been limited by the ability to distinguish these cells from other astrocyte populations. In order to characterize selective roles for PAs in vivo, a new mouse model has been generated in which the endogenous megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) gene drives expression of Cre fused to a mutated estrogen ligand-binding domain (Mlc1-T2A-CreERT2). This knock-in mouse model, which we term MLCT, allows for selective identification and tracking of PAs in the postnatal brain. We also demonstrate that MLCT-mediated ablation of PAs causes severe defects in BBB integrity, resulting in premature death. PA loss results in aberrant localization of Claudin 5 and -VE-Cadherin in endothelial cell junctions as well as robust microgliosis. Collectively, these data reveal essential functions for Mlc1-expressing PAs in regulating endothelial barrier integrity in mice and indicate that primary defects in astrocytes that cause BBB breakdown may contribute to human neurologic disorders.SIGNIFICANCE STATEMENT Interlaced among the billions of neurons and glia in the mammalian brain is an elaborate network of blood vessels. Signals from the brain parenchyma control the unique permeability properties of cerebral blood vessels known as the blood-brain barrier (BBB). However, we understand very little about the relative contributions of different neural cell types in the regulation of BBB functions. Here, we show that a specific subpopulation of astrocyte is essential for control of BBB integrity, with ablation of these cells leading to defects in endothelial cell junctions, BBB breakdown, and resulting neurologic deficits.


Assuntos
Astrócitos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/genética , Cistos , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
6.
Oncogene ; 39(50): 7253-7264, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33040087

RESUMO

Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioblastoma/patologia , Proteínas de Membrana/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
7.
Development ; 147(18)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32895288

RESUMO

The central nervous system (CNS) contains a complex network of blood vessels that promote normal tissue development and physiology. Abnormal control of blood vessel morphogenesis and maturation is linked to the pathogenesis of various neurodevelopmental diseases. The CNS-specific genes that regulate blood vessel morphogenesis in development and disease remain largely unknown. Here, we have characterized functions for the gene encoding prion protein 2 (Prnd) in CNS blood vessel development and physiology. Prnd encodes the glycosylphosphatidylinositol (GPI)-linked protein doppel, which is expressed on the surface of angiogenic vascular endothelial cells, but is absent in quiescent endothelial cells of the adult CNS. During CNS vascular development, doppel interacts with receptor tyrosine kinases and activates cytoplasmic signaling pathways involved in endothelial cell survival, metabolism and migration. Analysis of mice genetically null for Prnd revealed impaired CNS blood vessel morphogenesis and associated endothelial cell sprouting defects. Prnd-/- mice also displayed defects in endothelial barrier integrity. Collectively, these data reveal novel mechanisms underlying doppel control of angiogenesis in the developing CNS, and may provide new insights about dysfunctional pathways that cause vascular-related CNS disorders.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Priônicas/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Citoplasma/metabolismo , Proteínas Ligadas por GPI/metabolismo , Camundongos , Morfogênese/fisiologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia
8.
Cancer Res ; 78(14): 3809-3822, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29743287

RESUMO

Glioblastoma (GBM) is an invasive brain cancer with tumor cells that disperse from the primary mass, escaping surgical resection and invariably giving rise to lethal recurrent lesions. Here we report that PTP-PEST, a cytoplasmic protein tyrosine phosphatase, controls GBM cell invasion by physically bridging the focal adhesion protein Crk-associated substrate (Cas) to valosin-containing protein (Vcp), an ATP-dependent protein segregase that selectively extracts ubiquitinated proteins from multiprotein complexes and targets them for degradation via the ubiquitin proteasome system. Both Cas and Vcp are substrates for PTP-PEST, with the phosphorylation status of tyrosine 805 (Y805) in Vcp impacting affinity for Cas in focal adhesions and controlling ubiquitination levels and protein stability. Perturbing PTP-PEST-mediated phosphorylation of Cas and Vcp led to alterations in GBM cell-invasive growth in vitro and in preclinical mouse models. Collectively, these data reveal a novel regulatory mechanism involving PTP-PEST, Vcp, and Cas that dynamically balances phosphorylation-dependent ubiquitination of key focal proteins involved in GBM cell invasion.Significance: PTP-PEST balances GBM cell growth and invasion by interacting with the ATP-dependent ubiquitin segregase Vcp/p97 and regulating phosphorylation and stability of the focal adhesion protein p130Cas.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3809/F1.large.jpg Cancer Res; 78(14); 3809-22. ©2018 AACR.


Assuntos
Adesões Focais/genética , Glioblastoma/genética , Fosforilação/genética , Proteína Tirosina Fosfatase não Receptora Tipo 12/genética , Ubiquitinação/genética , Animais , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína Substrato Associada a Crk/genética , Glioblastoma/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Tirosina/genética , Proteína com Valosina/genética
9.
Sci Rep ; 8(1): 8267, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844613

RESUMO

Disruption of the blood-brain barrier (BBB) by cancer cells is linked to metastatic tumor initiation and progression; however, the pathways that drive these events remain poorly understood. Here, we have developed novel patient-derived xenograft (PDX) models of brain metastases that recapitulate pathological growth features found in original patient samples, thus allowing for analysis of BBB disruption by tumor cells. We report that the BBB is selectively disrupted in brain metastases, in part, via inhibition of the endothelial cell-expressed docosahexaenoic acid (DHA) transporter, major facilitator superfamily domain 2a (Mfsd2a). Loss of Mfsd2a expression in the tumor endothelium results in enhanced BBB leakage, but reduced DHA transport and altered lipid metabolism within metastases. Mfsd2a expression in normal cerebral endothelial cells is cooperatively regulated by TGFß and bFGF signaling pathways, and these pathways are pathologically diminished in the brain metastasis endothelium. These results not only reveal a fundamental pathway underlying BBB disruption by metastatic cancer cells, but also suggest that restoring DHA metabolism in the brain tumor microenvironment may be a novel therapeutic strategy to block metastatic cell growth and survival.


Assuntos
Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Células Endoteliais/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Transporte de Íons , Metabolismo dos Lipídeos/fisiologia , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Metástase Neoplásica/fisiopatologia , Transdução de Sinais , Simportadores , Microambiente Tumoral , Proteínas Supressoras de Tumor/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 12(9): e0185065, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28938007

RESUMO

Glioblastoma (GBM) is a rapidly progressive brain cancer that exploits the neural microenvironment, and particularly blood vessels, for selective growth and survival. Anti-angiogenic agents such as the vascular endothelial growth factor-A (VEGF-A) blocking antibody bevacizumab yield short-term benefits to patients due to blood vessel regression and stabilization of vascular permeability. However, tumor recurrence is common, and this is associated with acquired resistance to bevacizumab. The mechanisms that drive acquired resistance and tumor recurrence in response to anti-angiogenic therapy remain largely unknown. Here, we report that Neuropilin-1 (Nrp1) regulates GBM growth and invasion by balancing tumor cell responses to VEGF-A and transforming growth factor ßs (TGFßs). Nrp1 is expressed in GBM cells where it promotes TGFß receptor internalization and signaling via Smad transcription factors. GBM that recur after bevacizumab treatment show down-regulation of Nrp1 expression, indicating that altering the balance between VEGF-A and TGFß signaling is one mechanism that promotes resistance to anti-angiogenic agents. Collectively, these data reveal that Nrp1 plays a critical role in balancing responsiveness to VEGF-A versus TGFß to regulate GBM growth, progression, and recurrence after anti-vascular therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Bevacizumab/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Neuropilina-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Células HEK293 , Humanos , Masculino , Camundongos Nus , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Mol Cancer Res ; 14(12): 1277-1287, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27655131

RESUMO

Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvß8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of ß8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment. IMPLICATIONS: Tumor cell invasion is a major clinical obstacle in glioblastoma and this study identifies a new signaling pathway regulated by Spinophilin in invasive glioblastoma. Mol Cancer Res; 14(12); 1277-87. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Podossomos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Neoplasias Encefálicas/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Glioblastoma/metabolismo , Humanos , Integrinas/química , Camundongos , Proteínas dos Microfilamentos/química , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas do Tecido Nervoso/química , Ligação Proteica , Transdução de Sinais
12.
Development ; 142(24): 4363-73, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586223

RESUMO

Angiogenesis in the developing central nervous system (CNS) is regulated by neuroepithelial cells, although the genes and pathways that couple these cells to blood vessels remain largely uncharacterized. Here, we have used biochemical, cell biological and molecular genetic approaches to demonstrate that ß8 integrin (Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS angiogenesis by mediating adhesion and signaling events between neuroepithelial cells and vascular endothelial cells. ß8 integrin in the neuroepithelium promotes the activation of extracellular matrix (ECM)-bound latent transforming growth factor ß (TGFß) ligands and stimulates TGFß receptor signaling in endothelial cells. Nrp1 in endothelial cells suppresses TGFß activation and signaling by forming intercellular protein complexes with ß8 integrin. Cell type-specific ablation of ß8 integrin, Nrp1, or canonical TGFß receptors results in pathological angiogenesis caused by defective neuroepithelial cell-endothelial cell adhesion and imbalances in canonical TGFß signaling. Collectively, these data identify a paracrine signaling pathway that links the neuroepithelium to blood vessels and precisely balances TGFß signaling during cerebral angiogenesis.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Cadeias beta de Integrinas/metabolismo , Neovascularização Fisiológica , Neuropilina-1/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo , Animais , Encéfalo/patologia , Adesão Celular , Perda do Embrião/patologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Deleção de Genes , Masculino , Camundongos , Modelos Biológicos , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Peixe-Zebra
13.
Stem Cells Transl Med ; 4(10): 1234-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26285657

RESUMO

UNLABELLED: Human embryonic stem cells (hESCs) are a promising source of cells for tissue regeneration, yet histoincompatibility remains a major challenge to their clinical application. Because the human leukocyte antigen class I (HLA-I) molecules are the primary mediators of immune rejection, we hypothesized that cells derived from a hESC line lacking HLA-I expression could be transplanted without evoking a robust immune response from allogeneic recipients. In the present study, we used the replacement targeting strategy to delete exons 2 and 3 of ß2-microglobulin on both gene alleles in hESCs. Because ß2-microglobulin serves as the HLA-I light chain, disruption of the ß2-microglobulin gene led to complete HLA-I deficiency on the cell surface of hESCs and their derivatives. Therefore, these cells were resistant to CD8+ T-cell-mediated destruction. Although interferon-γ (IFN-γ) treatment significantly induced ß2-microglobulin expression, promoting CD8+ T cell-mediated killing of control hESCs and their derivatives, CD8+ T-cell-mediated cytotoxicity was barely observed with ß2-microglobulin-null hESCs and their derivatives treated with IFN-γ. This genetic manipulation to disrupt HLA-I expression did not affect the self-renewal capacity, genomic stability, or pluripotency of hESCs. Despite being relatively sensitive to natural killer (NK) cell-mediated killing due to the lack of HLA-I expression, when transplanted into NK cell-depleted immunocompetent mice, ß2-microglobulin-null hESCs developed into tumors resembling those derived from control hESCs in severe combined immunodeficiency mice. These results demonstrate that ß2-microglobulin-null hESCs significantly reduce immunogenicity to CD8+ T cells and might provide a renewable source of cells for tissue regeneration without the need for HLA matching in the future. SIGNIFICANCE: This study reports the generation of a novel ß2-microglobulin (B2M)-/- human embryonic stem cell (hESC) line. Differentiated mature cells from this line do not express cell surface human leukocyte antigen molecules even after interferon-γ stimulation and are resistant to alloreactive CD8+ T cells. Moreover, this B2M-/- hESC line contains no off-target integration or cleavage events, is devoid of stable B2M mRNA, exhibits a normal karyotype, and retains its self-renewal capacity, genomic stability, and pluripotency. Although B2M-/- hESC-derived cells are more susceptible to natural killer (NK) cells, murine transplantation studies have indicated that they are, overall, much less immunogenic than normal hESCs. Thus, these data show for the first time that, in vivo, the advantages provided by B2M-/- hESC-derived cells in avoiding CD8+ T-cell killing appear significantly greater than any disadvantage caused by increased susceptibility to NK cells.


Assuntos
Técnicas de Silenciamento de Genes , Células-Tronco Embrionárias Humanas/imunologia , Microglobulina beta-2/genética , Alelos , Animais , Linfócitos T CD8-Positivos/imunologia , Autorrenovação Celular , Sobrevivência Celular , Transplante de Células/efeitos adversos , Citotoxicidade Imunológica , Éxons/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Instabilidade Genômica , Rejeição de Enxerto/prevenção & controle , Antígenos HLA , Xenoenxertos , Histocompatibilidade , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/transplante , Humanos , Interferon gama/farmacologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos SCID , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/imunologia , Células-Tronco Pluripotentes/transplante , Deleção de Sequência , Teratoma/etiologia , Teratoma/imunologia , Microglobulina beta-2/fisiologia
14.
PLoS Genet ; 11(6): e1005356, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26121667

RESUMO

Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP). We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them.


Assuntos
Apolipoproteínas/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares/genética , Animais , Animais Geneticamente Modificados , Apolipoproteínas/genética , Proteínas de Transporte/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Feminino , Hemolinfa/metabolismo , Lipoproteínas/sangue , Lipoproteínas/genética , Ovário/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
J Immunol ; 193(10): 5099-107, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25297874

RESUMO

Listeria monocytogenes is a major cause of mortality resulting from food poisoning in the United States. In mice, C5 has been genetically linked to host resistance to listeriosis. Despite this genetic association, it remains poorly understood how C5 and its activation products, C5a and C5b, confer host protection to this Gram-positive intracellular bacterium. In this article, we show in a systemic infection model that the major receptor for C5a, C5aR1, is required for a normal robust host immune response against L. monocytogenes. In comparison with wild-type mice, C5aR1(-/-) mice had reduced survival and increased bacterial burden in their livers and spleens. Infected C5aR1(-/-) mice exhibited a dramatic reduction in all major subsets of splenocytes, which was associated with elevated caspase-3 activity and increased TUNEL staining. Because type 1 IFN has been reported to impede the host response to L. monocytogenes through the promotion of splenocyte death, we examined the effect of C5aR1 on type 1 IFN expression in vivo. Indeed, serum levels of IFN-α and IFN-ß were significantly elevated in L. monocytogenes-infected C5aR1(-/-) mice. Similarly, the expression of TRAIL, a type 1 IFN target gene and a proapoptotic factor, was elevated in NK cells isolated from infected C5aR1(-/-) mice. Treatment of C5aR1(-/-) mice with a type 1 IFNR blocking Ab resulted in near-complete rescue of L. monocytogenes-induced mortality. Thus, these findings reveal a critical role for C5aR1 in host defense against L. monocytogenes through the suppression of type 1 IFN expression.


Assuntos
Interferon-alfa/genética , Interferon beta/genética , Listeria monocytogenes/imunologia , Listeriose/imunologia , Baço/imunologia , Anafilatoxinas/imunologia , Animais , Anticorpos/farmacologia , Apoptose , Carga Bacteriana , Caspase 3/genética , Caspase 3/imunologia , Complemento C5a/genética , Complemento C5a/imunologia , Complemento C5b/genética , Complemento C5b/imunologia , Expressão Gênica , Interferon-alfa/imunologia , Interferon beta/imunologia , Listeriose/tratamento farmacológico , Listeriose/microbiologia , Listeriose/mortalidade , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Linfócitos/imunologia , Linfócitos/microbiologia , Linfócitos/patologia , Masculino , Camundongos , Camundongos Knockout , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/imunologia , Receptores de Interferon/antagonistas & inibidores , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Baço/microbiologia , Baço/patologia , Análise de Sobrevida , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia
16.
J Immunol ; 193(3): 1278-89, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24981453

RESUMO

Listeria monocytogenes is a Gram-positive intracellular bacterium that is acquired through tainted food and may lead to systemic infection and possible death. Despite the importance of the innate immune system in fighting L. monocytogenes infection, little is known about the role of complement and its activation products, including the potent C3a anaphylatoxin. In a model of systemic L. monocytogenes infection, we show that mice lacking the receptor for C3a (C3aR(-/-)) are significantly more sensitive to infection compared with wild-type mice, as demonstrated by decreased survival, increased bacterial burden, and increased damage to their livers and spleens. The inability of the C3aR(-/-) mice to clear the bacterial infection was not caused by defective macrophages or by a reduction in cytokines/chemokines known to be critical in the host response to L. monocytogenes, including IFN-γ and TNF-α. Instead, TUNEL staining, together with Fas, active caspase-3, and Bcl-2 expression data, indicates that the increased susceptibility of C3aR(-/-) mice to L. monocytogenes infection was largely caused by increased L. monocytogenes-induced apoptosis of myeloid and lymphoid cells in the spleen that are required for ultimate clearance of L. monocytogenes, including neutrophils, macrophages, dendritic cells, and T cells. These findings reveal an unexpected function of C3a/C3aR signaling during the host immune response that suppresses Fas expression and caspase-3 activity while increasing Bcl-2 expression, thereby providing protection to both myeloid and lymphoid cells against L. monocytogenes-induced apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/imunologia , Complemento C3a/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/patologia , Receptores de Complemento/fisiologia , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Complemento C3a/imunologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Listeria monocytogenes/patogenicidade , Listeriose/genética , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Receptores de Complemento/deficiência , Receptores de Complemento/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Regulação para Cima/genética , Regulação para Cima/imunologia , Receptor fas/antagonistas & inibidores , Receptor fas/biossíntese
17.
Mol Ther ; 18(3): 625-34, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20087316

RESUMO

Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células-Tronco Embrionárias/citologia , Células Epiteliais/citologia , Alvéolos Pulmonares/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Oxigênio/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Transplante de Células-Tronco/métodos , Transfecção , Transgenes
18.
J Immunol ; 182(10): 6533-9, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19414808

RESUMO

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits (CPN1) and two large subunits (CPN2) that protect the protein from degradation. Historically, CPN has been implicated as a major regulator of inflammation by its enzymatic cleavage of functionally important arginine and lysine amino acids from potent phlogistic molecules, such as the complement anaphylatoxins C3a and C5a. Because of no known complete CPN deficiencies, the biological impact of CPN in vivo has been difficult to evaluate. Here, we report the generation of a mouse with complete CPN deficiency by targeted disruption of the CPN1 gene. CPN1(-/-) mice were hypersensitive to lethal anaphylactic shock due to acute complement activation by cobra venom factor. This hypersensitivity was completely resolved in CPN1(-/-)/C5aR(-/-) but not in CPN1(-/-)/C3aR(-/-) mice. Moreover, CPN1(-/-) mice given C5a i.v., but not C3a, experienced 100% mortality. This C5a-induced mortality was reduced to 20% when CPN1(-/-) mice were treated with an antihistamine before C5a challenge. These studies describe for the first time a complete deficiency of CPN and demonstrate 1) that CPN plays a requisite role in regulating the lethal effects of anaphylatoxin-mediated shock, 2) that these lethal effects are mediated predominantly by C5a-induced histamine release, and 3) that C3a does not contribute significantly to shock following acute complement activation.


Assuntos
Complemento C5a/metabolismo , Lisina Carboxipeptidase/genética , Choque/genética , Animais , Southern Blotting , Complemento C3a/imunologia , Complemento C3a/metabolismo , Complemento C5a/imunologia , Inativadores do Complemento/toxicidade , Suscetibilidade a Doenças/imunologia , Venenos Elapídicos/toxicidade , Feminino , Histamina/imunologia , Histamina/metabolismo , Humanos , Lisina Carboxipeptidase/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Choque/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...