Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1062414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36741893

RESUMO

Introduction: Plants interact with plant growth-promoting bacteria (PGPB), especially under stress condition in natural and agricultural systems. Although a potentially beneficial microbiome has been found associated to plants from alpine systems, this plant- PGPB interaction has been scarcely studied. Nevados de Chillán Complex hold one of the southernmost xerophytic formations in Chile. Plant species living there have to cope with drought and extreme temperatures during the growing season period, microclimatic conditions that become harsher on equatorial than polar slopes, and where the interaction with PGPB could be key for plant survival. Our goal was to study the abundance and activity of different PGPB associated to two abundant plant species of Andean xerophytic formations on contrasting slopes. Methods: Twenty individuals of Berberis empetrifolia and Azorella prolifera shrubs were selected growing on a north and south slope nearby Las Fumarolas, at 2,050 m elevation. On each slope, microclimate based on temperature and moisture conditions were monitored throughout the growing period (oct. - apr.). Chemical properties of the soil under plant species canopies were also characterized. Bacterial abundance was measured as Log CFU g-1 from soil samples collected from each individual and slope. Then, the most abundant bacterial colonies were selected, and different hormonal (indoleacetic acid) and enzymatic (nitrogenase, phosphatase, ACC-deaminase) mechanisms that promote plant growth were assessed and measured. Results and Discussion: Extreme temperatures were observed in the north facing slope, recording the hottest days (41 vs. 36°C) and coldest nights (-9.9 vs. 6.6°C). Moreover, air and soil moisture were lower on north than on south slope, especially late in the growing season. We found that bacterial abundance was higher in soils on north than on south slope but only under B. empetrifolia canopy. Moreover, the activity of plant growth-promoting mechanisms varied between slopes, being on average higher on north than on south slope, but with plant species-dependent trends. Our work showed how the environmental heterogeneity at microscale in alpine systems (slope and plant species identity) underlies variations in the abundance and plant growth promoting activity of the microorganisms present under the plant canopy of the Andean xerophytic formations and highlight the importance of PGPB from harsh systems as biotechnological tools for restoration.

2.
Tree Physiol ; 38(1): 129-138, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036408

RESUMO

Many clonal plants produce vegetative recruits that remain connected to the parent plant. Such connections permit resource sharing among ramets, explaining the high survival rates of vegetative recruits during establishment under suboptimal conditions for sexual regeneration. We propose that differences in the regeneration niches of sexual and vegetative recruits reflect different physiological adjustments caused by parental supply of resources to the ramets. We conducted ecophysiological measurements in saplings and root suckers of Eucryphia cordifolia Cav., a tree species of the temperate rainforest of southern South America. We compared the following traits of saplings and suckers: gas exchange at the leaf level, crown architecture, daily crown carbon balance, biomass allocation to above-ground tissues (leaf-to-stem mass ratio, leaf mass area and leaf area ratio), xylem anatomy traits (lumen vessel fraction, vessel density and size) and stem ring width. We also correlated the growth rates of saplings and suckers with relevant environmental data (light and climate). Saplings showed morphological, architectural and physiological traits that enhance daily crown carbon balance and increase water-use efficiency, in order to supply their growth demands while minimizing water loss per unit of carbon gained. The radial growth of saplings diminished under dry conditions, which suggests a strong stomatal sensitivity to water availability. Suckers have low stomatal conductance, likely because the carbon supplied by the parent plant diminishes the necessity of high rates of photosynthesis. The low responsiveness of sucker growth to temporal changes in water availability also supports the existence of parental supply. The physiological differences between sexual and vegetative recruits satisfactorily explain the ecological niche of E. cordifolia, with saplings restricted to more closed and humid sites.


Assuntos
Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Fotossíntese/genética , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Caules de Planta/fisiologia , Transpiração Vegetal/genética , Transpiração Vegetal/fisiologia , Árvores/metabolismo , Água/metabolismo , Xilema/metabolismo , Xilema/fisiologia
3.
Tree Physiol ; 34(12): 1305-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25398632

RESUMO

Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E. cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.


Assuntos
Aclimatação , Clima , Secas , Luz , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Água , Chile , Mudança Climática , Escuridão , Magnoliopsida/crescimento & desenvolvimento , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...