Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 987077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507441

RESUMO

The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known to be essential for the metabolism of humans and animals. Humans do not produce AsA, so they depend on plants as a source of vitamin C for their food. The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation step is physically linked to the respiratory chain of plant mitochondria. This oxidation step is catalyzed by l-galactono-1,4-lactone dehydrogenase (l-GalLDH). This enzyme is not considered a limiting step for AsA production; however, it presents a distinguishing characteristic: the l-GalLDH can introduce electrons directly into the respiratory chain through cytochrome c (Cytc) and therefore can be considered an extramitochondrial electron source that bypasses the phosphorylating Complex III. The use of Cytc as electron acceptor has been debated in terms of its need for AsA synthesis, but little has been said in relation to its impact on the functioning of the respiratory chain. This work seeks to offer a new view about the possible changes that result of the link between AsA synthesis and the mitochondrial respiration. We hypothesized that some physiological alterations related to low AsA may be not only explained by the deficiency of this molecule but also by the changes in the respiratory function. We discussed some findings showing that respiratory mutants contained changes in AsA synthesis. Besides, recent works that also indicate that the excessive electron transport via l-GalLDH enzyme may affect other respiratory pathways. We proposed that Cytc reduction by l-GalLDH may be part of an alternative respiratory pathway that is active during AsA synthesis. Also, it is proposed that possible links of this pathway with other pathways of alternative electron transport in plant mitochondria may exist. The review suggests potential implications of this relationship, particularly for situations of stress. We hypothesized that this pathway of alternative electron input would serve as a strategy for adaptation of plant respiration to changing conditions.

2.
Methods Mol Biol ; 1670: 143-165, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28871541

RESUMO

We describe detailed procedures to get intact and well-coupled mitochondria from a variety of fruit species such as papaya (Carica papaya), guava (Psidium guajava), tomato (Solanum lycopersicum), and strawberry (Fragaria x ananassa) as well as the protocols to assess the capacities of AOX and UCP pathways in intact fruit mitochondria. The procedures presented here were tested for the species mentioned above; their use with other types of fruits must be tested for yield of intact and active mitochondria. This is possible from individual adjustments. Strict care during extraction, including the use of osmotic protectants (i.e., mannitol/sucrose) and antioxidants (i.e., cysteine, ascorbate) at defined concentrations, are critical factors to ensure mitochondrial integrity and to obtain higher yields. The mitochondria purified using the discontinuous Percoll gradients described here can be used for the analysis of the capacity of alternative respiration and uncoupling pathways in fruits. In addition, protocols for quantitative and semiquantitative PCR applicable for the analysis of AOX and UCP gene expression in fruits are shown. Microarray and RNA-seq data from public databases are also valuable for the analysis of AOX and UCP genes. In both cases having the sequences of genes or cDNAs to be used in primer design or probe identification is necessary.


Assuntos
Fracionamento Celular/métodos , Frutas/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Respiração Celular/genética , Genes de Plantas , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Desacoplamento Mitocondrial/metabolismo , Anotação de Sequência Molecular , Oxirredutases/metabolismo , Consumo de Oxigênio , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...