Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770695

RESUMO

The rotational excitation of a singly deuterated water molecule (HDO) by a heavy atom (Ne) and a light diatomic molecule (H2) is investigated theoretically and experimentally in the near-threshold regime. Crossed-molecular-beam measurements with a variable crossing angle are compared to close-coupling calculations based on high-accuracy potential energy surfaces. The two lowest rotational transitions, 000 → 101 and 000 → 111, are probed in detail and a good agreement between theory and experiment is observed for both transitions in the case of HDO + Ne, where scattering resonances are however blurred out experimentally. In the case of HDO + H2, the predicted theoretical overlapping resonances are faithfully reproduced by experiment for the 000 → 111 transition, while the calculated strong signal for the 000 → 101 transition is not detected. Future work is needed to reconcile this discrepancy.

2.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364356

RESUMO

We present a combined experimental and theoretical study on the rotationally inelastic scattering of heavy water, D2O, with normal-H2. Crossed-molecular beam measurements are performed in the collision energy range between 10 and 100 cm-1, corresponding to the near-threshold regime in which scattering resonances are most pronounced. State-to-state excitation cross-sections are obtained by probing three low-lying rotational levels of D2O using the REMPI technique. These measurements are complemented by quantum close-coupling scattering calculations based on a high-accuracy D2O-H2 interaction potential. The agreement between experiment and theory is within the experimental error bars at 95% confidence intervals, leading to a relative difference of less than 7%: the near-threshold rise and the overall shape of the cross-sections, including small undulations due to resonances, are nicely reproduced by the calculations. Isotopic effects (D2O versus H2O) are also discussed by comparing the shape and magnitude of the respective cross-sections.

3.
J Phys Chem A ; 124(2): 259-264, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31283233

RESUMO

New molecular beam scattering experiments are reported for the water-hydrogen system. Integral cross sections of the first rotational excitations of para- and ortho-H2O by inelastic collisions with normal-H2 were determined by crossing a beam of H2O seeded in He with a beam of H2. H2O and H2 were cooled in the supersonic expansion down to their lowest rotational levels. Crossed-beam scattering experiments were performed at collision energies from 15 cm-1 (below the threshold for the excitation to the lowest excited rotational state of H2O: 18.6 cm-1) up to 105 cm-1 by varying the beam crossing angle. The measured state-to-state cross-sections were compared to the theoretical cross-sections (close-coupling quantum scattering calculations): the good agreement found further validates both the employed potential energy surface describing the H2O-H2 van der Waals interaction and the state-to-state rate coefficients calculated with this potential in the very low temperature range needed for the modeling of interstellar media.

5.
Front Chem ; 7: 164, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984737

RESUMO

Fine-structure populations and collision-induced energy transfer in atoms are of interest for many fields, from combustion to astrophysics. In particular, neutral carbon atoms are known to play a role in interstellar media, either as probes of physical conditions (ground state 3P j spin-orbit populations), or as cooling agent (collisional excitation followed by radiative decay). This work aims at investigating the spin-orbit excitation of atomic carbon in its ground electronic state due to collisions with molecular deuterium, an isotopic variant of H2, the most abundant molecule in the interstellar medium. Spin-orbit excitations of C(3P j ) by H2 or D2 are governed by non-adiabatic and spin-orbit couplings, which make the theoretical treatment challenging, since the Born-Oppenheimer approximation no longer holds. Inelastic collisional cross-sections were determined for the C(3P0) + D2 → C(3P j ) + D2 (with j = 1 and 2) excitation process. Experimental data were acquired in a crossed beam experiment at low collision energies, down to the excitation thresholds (at 16.42 and 43.41 cm-1, respectively). C-atoms were produced mainly in their ground spin-orbit state, 3P0, by dissociation of CO in a dielectric discharge through an Even-Lavie pulsed valve. The C-atom beam was crossed with a D2 beam from a second valve. The state-to-state cross-sections were derived from the C(3P j ) (j = 1 or 2) signal measured as a function of the beam crossing angle, i.e., as a function of the collision energy. The results show different quantum behaviors for excitation to C(3P1) or C(3P2) when C(3P0) collides with ortho-D2 or normal-D2. These experimental results are analyzed and discussed in the light of highly accurate quantum calculations. A good agreement between experimental and theoretical results is found. The present data are compared with those obtained for the C-He and C-H2 collisional systems to get new insights into the dynamics of collision induced spin-orbit excitation/relaxation of atomic carbon.

6.
J Phys Chem Lett ; 9(22): 6496-6501, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30376335

RESUMO

Nonadiabatic effects are of fundamental interest in collision dynamics. In particular, inelastic collisions between open-shell atoms and molecules, such as the collisional excitation of C(3 P j) by H2, are governed by nonadiabatic and spin-orbit couplings that are the sole responsible of collisional energy transfer. Here, we study collisions between carbon in its ground state C(3 P j=0) and molecular hydrogen (H2) at low collision energies that result in spin-orbit excitation to C(3 P j=1) and C(3 P j=2). State-to-state integral cross sections are obtained experimentally from crossed-beam experiments with a source of almost pure beam of C(3 P j=0) and theoretically from highly accurate quantum calculations. We observe very good agreement between experimental and theoretical data that demonstrates our ability to model nonadiabatic dynamics. New rate coefficients at temperatures relevant to astrochemical modeling are also provided. They should lead to an increase of the abundance of atomic C(3 P) derived from the observations of interstellar clouds and a decrease of the efficiency of the cooling of the interstellar gas due to carbon atoms.

7.
Nat Chem ; 10(5): 519-522, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29662206

RESUMO

Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C(3Pj=0) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol-1)-that result in spin-orbit excitation to C(3Pj=1) and C(3Pj=2). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C(3Pj=0) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.

8.
Appl Opt ; 53(19): 4117-22, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25089968

RESUMO

We present a cell for studies of light transmission through very strongly absorbing gases. It uses a fixed window and a mirror, parallel to the latter and attached to a micrometric linear motion feedthrough monitoring mirror-window distances from 0 to a couple of centimeters. This device is tested by recording CO2 gas spectra near 4.3 µm using a Fourier transform spectrometer. Their analysis shows that optical-path lengths between 20 and 2000 µm have been obtained. This now enables spectroscopic measurements of self-broadening coefficients of O16C12O16 lines in the ν3 band, for instance, and opens perspectives for optical soundings of thin films of porous materials.

9.
J Phys Chem A ; 117(46): 12155-64, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24047203

RESUMO

The reaction of CN radicals with HC3N is of interest for interstellar and circumstellar chemistry as well as for the chemistry of Titan's atmosphere, as part of a general scheme for cyanopolyyne synthesis within these low temperature environments. Here, we present the first experimental measurements of its rate coefficient below room temperature down to 22 K, employing the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photolysis-laser-induced fluorescence. A novel pulsed version of the CRESU technique employing a new spinning disk valve was used for some of the kinetics measurements. The measurements were in excellent agreement with the only previous determination at room temperature and show a marked increase in the rate coefficient as the temperature is lowered, with the results being well represented by the equation k(T) = 1.79 × 10(-11)(T/300 K)(-0.67) cm(3) molecule(-1) s(-1), with a root-mean-square (statistical) error of 0.61 × 10(-11) cm(3) molecule(-1) s(-1), to which should be added 10% estimated likely systematic error. High accuracy ab initio quantum chemical calculations coupled with variational two-transition state theory calculations were also performed and demonstrate excellent agreement within the combined experimental and predicted theoretical uncertainties. The theoretical rate coefficients, adjusted within expected uncertainties, can be accurately reproduced over the 5 to 400 K temperature range by the expression [(1.97 × 10(-8)) T (-1.51) exp(-3.24/T) + (4.85 × 10(-13)) T (0.563) exp (17.6/T)] cm(3) molecule(-1) s(-1), where T is in K. The new measurements are likely to be of interest to astrochemical and planetary atmospheric modelers.

10.
Phys Chem Chem Phys ; 12(31): 8737-49, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20372694

RESUMO

The chemical reaction dynamics to form o-, m-, and p-cyanophenylacetylene via the neutral-neutral reaction of ground state cyano radicals with phenylacetylene and D(1)-phenylacetylene were investigated in crossed beam experiments; these studies were combined with kinetics measurements of the rate coefficients at temperatures of 123, 200, and 298 K and supplemented by electronic structure calculations. The data suggest that the reaction is initiated by a barrier-less addition of the electrophilic cyano radical to the o-, m-, or p-position of the aromatic ring. The eventually fragmented via atomic hydrogen elimination to form o-, m-, and p-cyanophenylacetylene via tight exit transition states with the hydrogen atom being ejected almost perpendicularly to the molecular plane of the rotating complex. The overall reaction to form o-, m-, and p-cyanophenylacetylene was found to be exoergic by 89 +/- 18 kJ mol(-1) in nice agreement with the calculations. The o-cyanophenylacetylene isomer is of particular relevance as a potential building block to the formation of nitrogen-substituted didehydronaphthalene molecules in analogy to didehydronaphthalene in Titan's aerosol layers--a pathway hitherto neglected by the planetary science modeling community.

11.
Faraday Discuss ; 147: 155-71; discussion 251-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21302546

RESUMO

The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...