Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001514

RESUMO

Autoantibodies targeting the neuronal antigen metabotropic glutamate receptor 5 (mGluR5) have been identified in patients with Ophelia syndrome, which describes a co-occurrence of paraneoplastic limbic encephalitis and Hodgkin lymphoma (HL). Little data exist regarding frequency and function of mGluR5 in HL and its potential role in causing seropositive paraneoplastic disease. We studied a representative cohort of pediatric HL and NHL patients (n = 57) using immunohistochemistry and fluorescence staining to investigate mGluR5 expression. All lymphoma tissues displayed positive mGluR5 staining, with focus on Hodgkin-Reed-Sternberg (H-RS) cells. We did not detect any mGluR5 staining in tumor-free lymph nodes, which is consistent with the absence of GRM5 transcripts in RNA-sequencing data from non-malignant B and T cells. The frequent presence in pediatric lymphoma falls in line with reports of mGluR5 expression and associated tumor progression in other malignancies. We tested for correlation with clinical features, focusing on disease progression and neurological symptoms. Low mGluR5 expression in H-RS cells correlated with young patient age (<15 years) and positive histology for EBV infection. Paraneoplastic or neurological symptoms were found exclusively in HL patients. While an impact of mGluR5 on HL severity remains possible, a prognostic value of mGluR5 expression levels requires further investigation.

2.
Cells ; 12(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36831273

RESUMO

Ophelia syndrome is characterized by the coincidence of severe neuropsychiatric symptoms, classical Hodgkin lymphoma, and the presence of antibodies to the metabotropic glutamate 5 receptor (mGluR5). Little is known about the pathogenetic link between these symptoms and the role that anti-mGluR5-antibodies play. We investigated lymphoma tissue from patients with Ophelia syndrome and with isolated classical Hodgkin lymphoma by quantitative immunocytochemistry for mGluR5-expression. Further, we studied the L-1236, L-428, L-540, SUP-HD1, KM-H2, and HDLM-2 classical Hodgkin lymphoma cell lines by FACS and Western blot for mGluR5-expression, and by transcriptome analysis. mGluR5 surface expression differed significantly in terms of receptor density, distribution pattern, and percentage of positive cells. The highest expression levels were found in the L-1236 line. RNA-sequencing revealed more than 800 genes that were higher expressed in the L-1236 line in comparison to the other classical Hodgkin lymphoma cell lines. High mGluR5-expression was associated with upregulation of PI3K/AKT and MAPK pathways and of downstream targets (e.g., EGR1) known to be involved in classical Hodgkin lymphoma progression. Finally, mGluR5 expression was increased in the classical Hodgkin lymphoma-tissue of our Ophelia syndrome patient in contrast to five classical Hodgkin lymphoma-patients without autoimmune encephalitis. Given the association of encephalitis and classical Hodgkin lymphoma in Ophelia syndrome, it is possible that mGluR5-expression in classical Hodgkin lymphoma cells not only drives tumor progression but also triggers anti-mGluR5 encephalitis even before classical Hodgkin lymphoma becomes manifest.


Assuntos
Encefalite , Doença de Hodgkin , Doenças do Sistema Nervoso , Humanos , Receptor de Glutamato Metabotrópico 5 , Fosfatidilinositol 3-Quinases , Autoanticorpos , Síndrome , Linhagem Celular
3.
Am J Hum Genet ; 106(1): 102-111, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883641

RESUMO

Isolated complex III (CIII) deficiencies are among the least frequently diagnosed mitochondrial disorders. Clinical symptoms range from isolated myopathy to severe multi-systemic disorders with early death and disability. To date, we know of pathogenic variants in genes encoding five out of 10 subunits and five out of 13 assembly factors of CIII. Here we describe rare bi-allelic variants in the gene of a catalytic subunit of CIII, UQCRFS1, which encodes the Rieske iron-sulfur protein, in two unrelated individuals. Affected children presented with low CIII activity in fibroblasts, lactic acidosis, fetal bradycardia, hypertrophic cardiomyopathy, and alopecia totalis. Studies in proband-derived fibroblasts showed a deleterious effect of the variants on UQCRFS1 protein abundance, mitochondrial import, CIII assembly, and cellular respiration. Complementation studies via lentiviral transduction and overexpression of wild-type UQCRFS1 restored mitochondrial function and rescued the cellular phenotype, confirming UQCRFS1 variants as causative for CIII deficiency. We demonstrate that mutations in UQCRFS1 can cause mitochondrial disease, and our results thereby expand the clinical and mutational spectrum of CIII deficiencies.


Assuntos
Alopecia/patologia , Cardiomiopatias/patologia , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Proteínas Ferro-Enxofre/genética , Doenças Mitocondriais/patologia , Mutação , Alelos , Alopecia/genética , Cardiomiopatias/genética , Criança , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Lactente , Masculino , Doenças Mitocondriais/genética , Linhagem
4.
JIMD Rep ; 43: 27-35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29654543

RESUMO

BACKGROUND: Mutations in SLC25A4 (syn. ANT1, Adenine nucleotide translocase, type 1) are known to cause either autosomal dominant progressive external ophthalmoplegia (adPEO) or recessive mitochondrial myopathy, hypertrophic cardiomyopathy, and lactic acidosis. METHODS AND RESULTS: Whole exome sequencing in a young man with myopathy, subsarcolemmal mitochondrial aggregations, cardiomyopathy, lactic acidosis, and L-2-hydroxyglutaric aciduria (L-2-HGA) revealed a new homozygous mutation in SLC25A4 [c.653A>C, NM_001151], leading to the replacement of a highly conserved glutamine by proline [p.(Q218P); NP_001142] that most likely affects the folding of the ANT1 protein. No pathogenic mutation was found in L2HGDH, which is associated with "classic" L-2-HGA. Furthermore, L-2-HGDH enzymatic activity in the patient fibroblasts was normal. Long-range PCR and Southern blot confirmed absence of mtDNA-deletions in blood and muscle. CONCLUSION: The disturbed ADP/ATP transport across the inner mitochondrial membrane may lead to an accumulation of different TCA-cycle intermediates such as 2-ketoglutarate (2-KG) in our patient. As L-2-HG is generated from 2-KG we hypothesize that the L-2-HG increase is a secondary effect of 2-KG accumulation. Hence, our report expands the spectrum of laboratory findings in ANT1-related diseases and hints towards a connection with organic acidurias.

5.
J Med Genet ; 56(3): 164-175, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30487246

RESUMO

BACKGROUND: Very long-chain fatty acids (VLCFAs) are essential for functioning of biological membranes. ELOVL fatty acid elongase 1 catalyses elongation of saturated and monounsaturated C22-C26-VLCFAs. We studied two patients with a dominant ELOVL1 mutation. Independently, Kutkowska-Kazmierczak et al. had investigated the same patients and found the same mutation. We extended our study towards additional biochemical, functional, and therapeutic aspects. METHODS: We did mutation screening by whole exome sequencing. RNA-sequencing was performed in patient and control fibroblasts. Ceramide and sphingomyelin levels were measured by LC-MS/MS. ELOVL1 activity was determined by a stable isotope-labelled [13C]malonyl-CoA elongation assay. ELOVL1 expression patterns were investigated by immunofluorescence, in situ hybridisation and RT-qPCR. As treatment option, we investigated VLCFA loading of fibroblasts. RESULTS: Both patients carried an identical heterozygous de novo ELOVL1 mutation (c.494C>T, NM_001256399; p.S165F) not deriving from a founder allele. Patients suffered from epidermal hyperproliferation and increased keratinisation (ichthyosis). Hypomyelination of the central white matter explained spastic paraplegia and central nystagmus, while optic atrophy was causative for reduction of peripheral vision and visual acuity. The mutation abrogated ELOVL1 enzymatic activity and reduced ≥C24 ceramides and sphingomyelins in patient cells. Fibroblast loading with C22:0-VLCFAs increased C24:0-ceramides and sphingomyelins. We found competitive inhibition for ceramide and sphingomyelin synthesis between saturated and monounsaturated VLCFAs. Transcriptome analysis revealed upregulation of modules involved in epidermal development and keratinisation, and downregulation of genes for neurodevelopment, myelination, and synaptogenesis. Many regulated genes carried consensus proliferator-activated receptor (PPAR)α and PPARγ binding motifs in their 5'-regions. CONCLUSION: A dominant ELOVL1 mutation causes a neuro-ichthyotic disorder possibly amenable to treatment with PPAR-modulating drugs.


Assuntos
Acantose Nigricans/genética , Surdez/genética , Doenças Desmielinizantes/genética , Elongases de Ácidos Graxos/genética , Ictiose/genética , Mutação , Atrofia Óptica/genética , Paraplegia/genética , Acantose Nigricans/diagnóstico , Adolescente , Sequência de Aminoácidos , Biomarcadores , Biópsia , Pré-Escolar , Surdez/diagnóstico , Doenças Desmielinizantes/diagnóstico , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Ictiose/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Atrofia Óptica/diagnóstico , Paraplegia/diagnóstico , Linhagem , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Sequenciamento do Exoma
6.
Am J Hum Genet ; 102(5): 858-873, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727687

RESUMO

The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161∗). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies.


Assuntos
Cerebelo/patologia , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/metabolismo , Variação Genética , Neurônios Motores/patologia , Proteínas de Ligação a RNA/genética , Medula Espinal/patologia , Sequência de Aminoácidos , Animais , Atrofia , Sequência de Bases , Cerebelo/diagnóstico por imagem , Pré-Escolar , Complexo Multienzimático de Ribonucleases do Exossomo/química , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Haplótipos/genética , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Linhagem , Proteínas de Ligação a RNA/química , Peixe-Zebra
7.
Hum Genet ; 136(7): 903-910, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540413

RESUMO

Congenital myopathies are a heterogeneous group of muscle disorders that are often genetically determined. Here, we investigated a boy with congenital myopathy, deafness, and neuropathy from a consanguineous Kurdish family by autozygosity mapping and whole exome sequencing. We found a homozygous nonsense mutation in SPTBN4 [c.1597C>T, NM_020971.2; p.(Q533*), NP_066022.2; ClinVar SUB2292235] encoding ßIV-spectrin, a non-erythrocytic member of the ß-spectrin family. Western blot confirmed the absence of the full-length 288 kDa isoform in muscle and of a specific 72 kDa isoform in fibroblasts. Clinical symptoms of the patient largely corresponded to those described for the quivering mouse, a loss-of-function animal model. Since the human phenotype of ßIV-spectrin deficiency included a myopathy with incomplete congenital fiber-type disproportion, we investigated muscle of the quivering (qv4J) mouse and found complete absence of type 1 fibers (fiber-type 2 uniformity). Immunohistology confirmed expression of ßIV-spectrin in normal human and mouse muscle at the sarcolemma and its absence in patient and quivering (qv4J) mouse. SPTBN4 mRNA-expression levels in healthy skeletal muscle were found in the range of other regulatory proteins. More patients have to be described to confirm the triad of congenital myopathy, neuropathy and deafness as the defining symptom complex for ßIV-spectrin deficiency.


Assuntos
Anormalidades Congênitas/genética , Surdez/genética , Genes Recessivos , Doenças Musculares/genética , Proteínas do Tecido Nervoso/genética , Espectrina/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Códon sem Sentido , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Análise de Sequência de DNA , Espectrina/deficiência , Espectrina/metabolismo
8.
Am J Hum Genet ; 98(3): 473-489, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26924529

RESUMO

Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.


Assuntos
Fraturas Ósseas/genética , Regulação da Expressão Gênica no Desenvolvimento , Atrofia Muscular Espinal/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Artrogripose/diagnóstico , Artrogripose/genética , Proteínas de Transporte/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fraturas Ósseas/diagnóstico , Perfilação da Expressão Gênica , Homozigoto , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Dados de Sequência Molecular , Atrofia Muscular Espinal/diagnóstico , Mutação , Proteínas Nucleares/genética , Linhagem , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
J Med Genet ; 52(9): 607-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048982

RESUMO

BACKGROUND: Various genetic defects cause autism associated with intellectual disability and epilepsy. Here, we set out to identify the genetic defect in a consanguineous Omani family with three affected children in whom mutations in known candidate genes had been excluded beforehand. METHODS: For mutation screening, we combined autozygosity mapping and whole exome sequencing. Segregation of potential disease variants with the phenotype was verified by Sanger sequencing. A splice-site mutation was confirmed and quantified by qPCR. RESULTS: We found an autosomal recessive splice acceptor mutation in DEAF1 (c.997+4A>C, p.G292Pfs*) in all affected individuals, which led to exon skipping, and reduced the normal full-length mRNA copy number in the patients to 5% of the wild-type level. Besides intellectual disability and autism, two of three affected siblings suffered from severe epilepsy. All patients exhibited dyskinesia of the limbs coinciding with symmetric T2 hyperintensities of the basal ganglia on cranial MRI. CONCLUSIONS: A recent report has shown dominant DEAF1 mutations to occur de novo in patients with intellectual disability. Here, we demonstrate that a DEAF1-associated disorder can also be inherited as an autosomal recessive trait with heterozygous individuals being entirely healthy. Our findings expand the clinical and genetic spectrum of DEAF1 mutations to comprise epilepsy and extrapyramidal symptoms.


Assuntos
Transtorno Autístico/genética , Doenças dos Gânglios da Base/genética , Discinesias/genética , Epilepsia/genética , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Adolescente , Mapeamento Cromossômico , Consanguinidade , Proteínas de Ligação a DNA , Genes Recessivos , Humanos , Masculino , Omã , Linhagem , Sítios de Splice de RNA , Análise de Sequência de DNA , Fatores de Transcrição
10.
Neurology ; 84(5): 523-31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25568292

RESUMO

OBJECTIVE: To identify the cause of sensorimotor neuropathy in a cohort of patients with genetically unsolved neuropathies (57 families with a total of 74 members) in whom hitherto known disease genes had been excluded. METHODS: We used autozygosity mapping or haplotype analysis to delineate potential disease loci in informative families. For mutation detection, we used either whole-exome sequencing or Sanger sequencing of positional candidates. Subsequently, a larger cohort was specifically screened for IGHMBP2 mutations. The pathogenicity of a splice-site mutation was verified in cultured patient skin fibroblasts on the messenger RNA level and by Western blot. RESULTS: We report on 5 patients with neuropathy from 3 families who carried truncating mutations in IGHMBP2. Contrary to the "classic" phenotype, they did not manifest with respiratory distress, but with progressive sensorimotor neuropathy. Only one patient required nocturnal mask ventilation, while 4 others maintained normal respiratory function by the age of 14, 18, 22, and 37 years. Three patients were still able to walk independently. All patients had a predominantly axonal sensorimotor neuropathy with subsequent muscle atrophy, but without obvious sensory symptoms. Two patients had signs of autonomic neuropathy. CONCLUSIONS: Mutations in IGHMBP2 should be considered in the molecular genetic workup of patients with hereditary sensorimotor neuropathies, even in the absence of respiratory symptoms.


Assuntos
Axônios/patologia , Proteínas de Ligação a DNA/genética , Mutação/genética , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Estudos de Coortes , Feminino , Genes Recessivos/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética , Humanos , Masculino , Linhagem
11.
Neurol Genet ; 1(4): e32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27066569

RESUMO

OBJECTIVE: To identify the underlying genetic cause of a congenital neuropathy in a 5-year-old boy as part of a cohort of 32 patients from 23 families with genetically unresolved neuropathies. METHODS: We used autozygosity mapping coupled with next-generation sequencing to investigate a consanguineous family from Lebanon with 1 affected and 2 healthy children. Variants were investigated for segregation in the family by Sanger sequencing. A splice site mutation was further evaluated on the messenger RNA level by quantitative reverse transcription PCR. Subsequently, a larger cohort was specifically screened for receptor expression-enhancing protein 1 (REEP1) gene mutations. RESULTS: We detected a homozygous splice donor mutation in REEP1 (c.303+1-7GTAATAT>AC, p.F62Kfs23*; NM_022912) that cosegregated with the phenotype in the family, leading to complete skipping of exon 4 and a premature stop codon. The phenotype of the patient is similar to spinal muscular atrophy with respiratory distress type 1 (SMARD1) with additional distal arthrogryposis and involvement of the upper motor neuron manifested by pronounced hyperreflexia. CONCLUSION: To date, only dominant REEP1 mutations have been reported to be associated with a slowly progressive hereditary spastic paraplegia. The findings from our patient expand the phenotypical spectrum and the mode of inheritance of REEP1-associated disorders. Recessive mutations in REEP1 should be considered in the molecular genetic workup of patients with a neuromuscular disorder resembling SMARD1, especially if additional signs of upper motor neuron involvement and distal arthrogryposis are present.

12.
Am J Physiol Regul Integr Comp Physiol ; 307(4): R444-54, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24965795

RESUMO

Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn(-/-) mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn(-/-) mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn(-/-) mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn(-/-) mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity.


Assuntos
Metabolismo Energético , Contração Muscular , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Resistência Física , Animais , Genótipo , Glicólise , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Fadiga Muscular , Miostatina/deficiência , Miostatina/genética , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Fenótipo , Fosfopiruvato Hidratase/metabolismo , Corrida , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Mol Ther ; 22(8): 1423-1433, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24861054

RESUMO

Myostatin regulates skeletal muscle size via the activin receptor IIB (ActRIIB). However, its effect on muscle energy metabolism and energy-dependent muscle function remains largely unexplored. This question needs to be solved urgently since various therapies for neuromuscular diseases based on blockade of ActRIIB signaling are being developed. Here, we show in mice, that 4-month pharmacological abrogation of ActRIIB signaling by treatment with soluble ActRIIB-Fc triggers extreme muscle fatigability. This is associated with elevated serum lactate levels and a severe metabolic myopathy in the mdx mouse, an animal model of Duchenne muscular dystrophy. Blockade of ActRIIB signaling downregulates porin, a crucial ADP/ATP shuttle between cytosol and mitochondrial matrix leading to a consecutive deficiency of oxidative phosphorylation as measured by in vivo Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Further, ActRIIB blockade reduces muscle capillarization, which further compounds the metabolic stress. We show that ActRIIB regulates key determinants of muscle metabolism, such as Pparß, Pgc1α, and Pdk4 thereby optimizing different components of muscle energy metabolism. In conclusion, ActRIIB signaling endows skeletal muscle with high oxidative capacity and low fatigability. The severe metabolic side effects following ActRIIB blockade caution against deploying this strategy, at least in isolation, for treatment of neuromuscular disorders.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Fragmentos Fc das Imunoglobulinas/farmacologia , Músculos/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Animais , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Porinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...