Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2015: 235810, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25879051

RESUMO

The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts.

2.
Interact J Med Res ; 1(2): e16, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23608745

RESUMO

BACKGROUND: Until recently, laboratory automation has focused primarily on improving hardware. Future advances are concentrated on intelligent software since laboratories performing clinical diagnostic testing require improved information systems to address their data processing needs. In this paper, we propose DB4US, an application that automates information related to laboratory quality indicators information. Currently, there is a lack of ready-to-use management quality measures. This application addresses this deficiency through the extraction, consolidation, statistical analysis, and visualization of data related to the use of demographics, reagents, and turn-around times. The design and implementation issues, as well as the technologies used for the implementation of this system, are discussed in this paper. OBJECTIVE: To develop a general methodology that integrates the computation of ready-to-use management quality measures and a dashboard to easily analyze the overall performance of a laboratory, as well as automatically detect anomalies or errors. The novelty of our approach lies in the application of integrated web-based dashboards as an information management system in hospital laboratories. METHODS: We propose a new methodology for laboratory information management based on the extraction, consolidation, statistical analysis, and visualization of data related to demographics, reagents, and turn-around times, offering a dashboard-like user web interface to the laboratory manager. The methodology comprises a unified data warehouse that stores and consolidates multidimensional data from different data sources. The methodology is illustrated through the implementation and validation of DB4US, a novel web application based on this methodology that constructs an interface to obtain ready-to-use indicators, and offers the possibility to drill down from high-level metrics to more detailed summaries. The offered indicators are calculated beforehand so that they are ready to use when the user needs them. The design is based on a set of different parallel processes to precalculate indicators. The application displays information related to tests, requests, samples, and turn-around times. The dashboard is designed to show the set of indicators on a single screen. RESULTS: DB4US was deployed for the first time in the Hospital Costa del Sol in 2008. In our evaluation we show the positive impact of this methodology for laboratory professionals, since the use of our application has reduced the time needed for the elaboration of the different statistical indicators and has also provided information that has been used to optimize the usage of laboratory resources by the discovery of anomalies in the indicators. DB4US users benefit from Internet-based communication of results, since this information is available from any computer without having to install any additional software. CONCLUSIONS: The proposed methodology and the accompanying web application, DB4US, automates the processing of information related to laboratory quality indicators and offers a novel approach for managing laboratory-related information, benefiting from an Internet-based communication mechanism. The application of this methodology has been shown to improve the usage of time, as well as other laboratory resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...