Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(6)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37371995

RESUMO

The use of trace elements in agriculture as a complement to crop fertilization programs is a practice that is gaining importance and relevance worldwide. Iodine and selenium perform essential functions in human health, related to the proper functioning of the thyroid gland, acting as antioxidants and antiproliferatives, and their limited intake through food consumption can cause malnutrition, reflected in the abnormal development and growth of humans. This research aimed to evaluate the nutraceutical quality of tomato (Solanum lycopersicum L.) in response to seed priming based on KIO3 (0, 100, 150, 200, 250 mg L-1) and Na2SeO3 (0, 0.5, 1, 2, 3 mg L-1), performed by interaction from a 52-factorial design and by independent factors in a 24-h imbibition time. The tomato crop was established under greenhouse conditions in 10-L polyethylene containers containing peat moss and perlite 1:1 (v/v). Regarding non-enzymatic antioxidant compounds, lycopene, ß-carotene and flavonoid contents in tomato fruits significantly increased with KIO3 and Na2SeO3 treatments; however, vitamin C content was negatively affected. KIO3 increased the phenol and chlorophyll-a contents of leaves. In relation to enzymatic activity, KIO3 positively influenced GSH content and PAL activity in tomato fruits. KIO3 also positively influenced GSH content in leaves while negatively affecting PAL and APX activities. Na2SeO3 favored GSH content and GPX activity in tomato fruits and leaves. Na2SeO3 negatively affected the antioxidant capacity of hydrophilic compounds by ABTS in fruits and leaves and favored hydrophilic compounds by DPPH in leaves. Seed imbibition based on KIO3 and Na2SeO3 is a method that is implemented in the tomato crop and presents interesting aspects that favor the nutraceutical quality of tomato fruits, which may contribute to increasing the intake of these minerals in humans through tomato consumption.

2.
Heliyon ; 9(1): e12787, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36647345

RESUMO

Zn is an indispensable nutrient for crops that usually presents low bioavailability. Different techniques have been proposed to improve the bioavailability of Zn, including the use of nanofertilizers. The objective of the study was to evaluate the applications of drench (D) and foliar (F) ZnO nanoparticles (NZnO) compared to those of ionic Zn2+ (ZnSO4) in lettuce. The plants cv. Great Lakes 407 was produced in pots of 4 L with perlite-peat moss (1:1) under greenhouse conditions. The treatments consisted of NZnO applications that replaced the total Zn provided with a Steiner solution, as follows: Zn2+ (100%D) (control); Zn2+ (50%D+50%F); NZnO (100%D); NZnO (50%D+50%F); NZnO (75%D); NZnO (50%D); NZnO (75%F) and NZnO (50%F). Four applications of Zn were made with a frequency of 15 days. 75 days after transplant (DAP), the fresh and dry biomass, chlorophyll a, b, and ß-carotene, phenolics, flavonoids, antioxidant capacity, vitamin C, glutathione, H2O2, total protein, and enzymatic activity of PAL, CAT, APX, and GPX were evaluated. The mineral concentrations (N, P, K, Ca, Mg, S, Cu, Fe, Mn, Mo, Zn, Ni, and Si) in the leaves and roots of plants were also determined. The results showed that, compared to Zn2+, NZnO promoted increases in biomass (14-52%), chlorophylls (32-69%), and antioxidant compounds such as phenolics, flavonoids, and vitamin C. The activity of enzymes like CAT and APX, as well as the foliar concentration of Ca, Mg, S, Fe, Mn, Zn, and Si increased with NZnO. A better response was found in the plants for most variables with foliar applications of NZnO equivalent to 50-75% of the total Zn2+ applied conventionally. These results demonstrate that total replacement of Zn2+ with NZnO is possible, promoting fertilizer efficiency and the nutraceutical quality of lettuce.

3.
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834701

RESUMO

The production of ornamentals is an economic activity of great interest, particularly the production of Lilium. This plant is very attractive for its color and shapes; however, the quality of its flower and its shelf life can decrease very fast. Therefore, it is of the utmost importance to develop techniques that allow for increasing both flower quality and shelf life. Nanotechnology has allowed for the use of various materials with unique characteristics. These materials can induce a series of positive responses in plants, among which the production of antioxidant compounds stands out. The objective of this study was to determine the impact of the application of silicone nanoparticles (SiO2 NPs) on the quality, shelf life, and antioxidant status of Lilium. For this, different concentrations of SiO2 NPs (0, 200, 400, 600, 800, and 1000 mg L-1) were applied in two ways, foliar and soil, as two independent experiments. The contents of enzymatic (superoxide dismutase, glutathione peroxidase, catalase, ascorbate peroxidase, and phenylalanine ammonia lyase) and non-enzymatic (phenols, flavonoids, and glutathione) antioxidant compounds, the mineral content, flower quality, and shelf life were analyzed. The results showed that the application of SiO2 NPs through the foliar method induced a greater flowers' shelf life (up to 21.62% more than the control); greater contents of Mg, P, and S (up to 25.6%, 69.1%, and 113.9%, respectively, compared to the control); more photosynthetic pigment (up to 65.17% of total chlorophyll); more glutathione peroxidase activity (up to 69.9%); more phenols (up to 25.93%); and greater antioxidant capacity as evaluated by the DPPH method (up to 5.18%). The use of SiO2 NPs in the production of Lilium is a good alternative method to increase flower quality and shelf life.

4.
Int J Mol Sci ; 20(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621162

RESUMO

Biostimulants are materials that when applied in small amounts are capable of promoting plant growth. Nanoparticles (NPs) and nanomaterials (NMs) can be considered as biostimulants since, in specific ranges of concentration, generally in small levels, they increase plant growth. Pristine NPs and NMs have a high density of surface charges capable of unspecific interactions with the surface charges of the cell walls and membranes of plant cells. In the same way, functionalized NPs and NMs, and the NPs and NMs with a corona formed after the exposition to natural fluids such as water, soil solution, or the interior of organisms, present a high density of surface charges that interact with specific charged groups in cell surfaces. The magnitude of the interaction will depend on the materials adhered to the corona, but high-density charges located in a small volume cause an intense interaction capable of disturbing the density of surface charges of cell walls and membranes. The electrostatic disturbance can have an impact on the electrical potentials of the outer and inner surfaces, as well as on the transmembrane electrical potential, modifying the activity of the integral proteins of the membranes. The extension of the cellular response can range from biostimulation to cell death and will depend on the concentration, size, and the characteristics of the corona.


Assuntos
Nanopartículas , Nanoestruturas , Plantas/metabolismo , Equilíbrio Ácido-Base , Cobre/metabolismo , Concentração de Íons de Hidrogênio , Membranas Intracelulares/metabolismo , Concentração Osmolar , Oxirredução , Coroa de Proteína/metabolismo , Eletricidade Estática , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...