Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(36): 15394-15402, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34499056

RESUMO

We report the identification and quantitative isolation of Au145(SR)60X (R = n-butyl, n-pentyl; X = halide) along with elucidation of key properties as compared to the corresponding ubiquitous chiral-icosahedral Au144(SR)60 cluster known to have a central vacancy. The stoichiometries were assessed by electrospray mass spectrometry (ESI-MS) at isotopic resolution, and induced dissociation patterns indicate the 'extra' (Au,Br) atoms are strongly bound components of these structures. Voltammetric and spectroscopic characterization reveals Au145(SR)60X behaviors that are qualitatively similar to yet fascinatingly distinct from those of Au144(SR)60. (1H,13C)-NMR spectra clearly show how both Au145(SR)60X and Au144(SR)60 are capped by 12 distinct ligand types of 5-fold equivalence, as was recently established for Au144(SR)60 capped by shorter ligands, demonstrating that this novel cluster shares the same chiral-icosahedral motif. Intriguingly, Au145(SR)60X is strongly near-IR luminescent, whereas under comparable conditions Au144(SR)60 barely emits. The photoluminescence pattern of Au145(SR)60X is very similar to that observed for Au25(SR)18, which contains the Au13 core. The combined results are interpreted as consistent with neutral Au145(SR)60X as a diamagnetic species, electronically and structurally similar to the corresponding Au144(SR)60 compounds.

2.
Chemphyschem ; 21(11): 1177-1183, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32237266

RESUMO

The fluorescence properties of some imidazolium derivatives are relevant in photosensing and therefore, the structural analysis of them is a key point for its rational design, which would be useful to prepare new systems with novel applications. Herein we report a multidisciplinary study of the fluorescence and voltammetric properties of three imidazolium compounds {1,3-bis[(R,R)-1'-chloro-1'-phenylpropan-2'-yl]-imidazolium chloride (1), 1,3-bis[(Z)-1'-phenylprop-1'-en-2'-yl]imidazolium chloride (2) 1,3-bis[(R)-1'-chlorobutan-2'-yl]-imidazolium chloride (3)}. Electronic structure calculations and Bader analyses were used to correlate both fluorescence and the capability of the molecules to be reduced through a heterogeneous electron transfer process. Both properties are strongly dependent on the proton in position two of the imidazolium ring, where the electron transfer as well as the excitation of the electrons are carried out. The reactivity in this position is controlled by the N-substituents on the imidazolium ring and is due to single contacts H⋅⋅⋅Cl- , tricentric contacts Cl⋅⋅⋅Cl- ⋅⋅⋅Cl, π-electronic delocalization and π-stacking interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...