Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529905

RESUMO

Fusobacterium nucleatum is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of Fusobacterium species isolated from malignant or potentially malignant oral mucosa were F. nucleatum subsp. polymorphum. Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 F. nucleatum subsp. polymorphum genomes. F. nucleatum subsp. polymorphum was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies polymorphum, but also between different subspecies of F. nucleatum. Strains of subspecies polymorphum with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of F. nucleatum subsp. polymorphum and provides a new framework for defining virulence in this organism.


Assuntos
Transferência Genética Horizontal , Mosaicismo , Humanos , Filogenia , Fusobacterium/genética , Fenótipo , Dosagem de Genes
2.
PLoS Genet ; 19(12): e1011082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048294

RESUMO

The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, ß- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOß2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloß2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.


Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sistemas CRISPR-Cas/genética , Mutagênese , Fenótipo , Regulação Fúngica da Expressão Gênica , Deleção de Genes
3.
J Oral Microbiol ; 15(1): 2263971, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795170

RESUMO

We investigated bacterial colonisation patterns of healthy mucosa (buccal, tongue, palate and floor of mouth) in a cohort of adults in order to determine how smoking, tooth loss, plaque levels and oral hygiene practices impacted on mucosal colonisation. A total of 322 swabs were recovered from 256 participants, of whom 46% were current smokers. We analysed colonization by sequencing the V1-V3 regions of the 16S rRNA gene. Palate and tongue microbiomes generally exhibited greater biodiversity than buccal and floor of mouth. Although Neisseria, Lautropia and Haemophilus spp. showed reduced abundance in smokers, buccal mucosa specifically showed a significant increase in Prevotella spp., whereas tongue and floor of mouth tended towards increased abundance of Streptococcus spp. Unexpectedly, tooth brushing frequency had a greater impact on mucosal community structure than plaque levels. Tooth loss was associated with significant reductions in mucosal biodiversity and had site-specific impacts, with buccal communities showing increased abundance of periodontitis-associated species and Rothia mucilaginosa, whereas tongue communities exhibited increased abundance of several streptococcal OTUs and reduced abundance of Haemophilus spp. This study highlights the complex relationship between mucosal colonisation and host factors, highlighting the need for careful consideration of these factors in mucosal microbiome studies.

4.
Front Oral Health ; 4: 1166037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035251

RESUMO

The tongue and floor of the mouth are high-risk sites for oral squamous cell carcinoma (OSCC), while smoking is its most significant risk factor. Recently, questions have been raised as to the role of the oral microbiome in OSCC because of a wealth of evidence demonstrating that the microbiome of OSCC differs from that of healthy mucosa. However, oral site and smoking also have a significant impact on oral microbial communities, and to date, the role these factors play in influencing the dysbiotic microbial communities of OSCC and precursor lesions has not been considered. This review aims to examine the influence of site and smoking on the oral microbiome and, in turn, whether these microbiome changes could be involved in oral carcinogenesis.

5.
Essays Biochem ; 67(5): 843-851, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37013399

RESUMO

Mediator is a complex of polypeptides that plays a central role in the recruitment of RNA polymerase II to promoters and subsequent transcriptional activation in eukaryotic organisms. Studies have now shown that Mediator has a role in regulating expression of genes implicated in virulence and antifungal drug resistance in pathogenic fungi. The roles of specific Mediator subunits have been investigated in several species of pathogenic fungi, particularly in the most pathogenic yeast Candida albicans. Uniquely, pathogenic yeast also present several interesting examples of divergence in Mediator structure and function, most notably in C. glabrata, which possesses two orthologues of Med15, and in C. albicans, which has a massively expanded family of Med2 orthologues known as the TLO gene family. This review highlights specific examples of recent progress in characterizing the role of Mediator in pathogenic fungi.


Assuntos
Antifúngicos , Complexo Mediador , Antifúngicos/farmacologia , Complexo Mediador/genética , Complexo Mediador/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Ativação Transcricional , Farmacorresistência Fúngica
6.
Toxicol Lett ; 379: 11-19, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871794

RESUMO

Fluoride is added to drinking water in some countries to prevent tooth decay (caries). There is no conclusive evidence that community water fluoridation (CWF) at WHO recommended concentrations for caries prevention has any harmful effects. However, research is ongoing regarding potential effects of ingested fluoride on human neurodevelopment and endocrine dysfunction. Simultaneously, research has emerged highlighting the significance of the human microbiome in gastrointestinal and immune health. In this review we evaluate the literature examining the effect of fluoride exposure on the human microbiome. Unfortunately, none of the studies retrieved examined the effects of ingested fluoridated water on the human microbiome. Animal studies generally examined acute fluoride toxicity following ingestion of fluoridated food and water and conclude that fluoride exposure can detrimentally perturb the normal microbiome. These data are difficult to extrapolate to physiologically relevant human exposure dose ranges and the significance to humans living in areas with CWF requires further investigation. Conversely, evidence suggests that the use of fluoride containing oral hygiene products may have beneficial effects on the oral microbiome regarding caries prevention. Overall, while fluoride exposure does appear to impact the human and animal microbiome, the long-term consequences of this requires further study.


Assuntos
Fluorose Dentária , Microbiota , Animais , Humanos , Fluoretos/toxicidade , Fluoretação/efeitos adversos , Alimentos
7.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36764670

RESUMO

Human saliva contains natural antimicrobial enzymes. In this in-vitro study, we evaluate the antimicrobial activity of a dentifrice containing a salivary enzyme complex (SEC) with xylitol versus a standard 0.12% chlorhexidine (CHX) dentifrice. Adherent cells of Streptococcus gordonii, Strep. mutans, Actinomyces naeslundii, Fusobacterium nucleatum subsp polymorphum, and Corynebacterium matruchotii were exposed to SEC-xylitol and CHX dentifrices for 2 min and viable CFUs were enumerated. Exposure to the SEC-xylitol dentifrice resulted in a significant reduction in bacterial viability, which was greater than that shown by the CHX dentifrice, against all organisms tested. The SEC-xylitol dentifrice also exhibited greater antimicrobial activity against all organsims in well diffusion assays compared to CHX. Dentifrice activity was also evaluated against a three species community of Strep. gordonii, Strep. mutans, and Coryne. matruchotii using bacterial live/dead stain. The SEC-xylitol dentifrice was at least as effective as CHX in removal of the multispecies community. The combination of SEC and xylitol generates a highly effective antimicrobial dentifrice with greater antibacterial activity than a standard 0.12% CHX formulations. SEC and xylitol combinations are worthy of further investigation for routine use and in the management of gingivitis and periodontal disease.


Assuntos
Anti-Infecciosos , Dentifrícios , Infecções Estreptocócicas , Humanos , Clorexidina , Streptococcus mutans , Xilitol , Complexos Multienzimáticos
8.
J Crohns Colitis ; 17(4): 553-564, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-36239621

RESUMO

BACKGROUND: There is a limited literature describing the oral microbiome and its diagnostic potential in paediatric inflammatory bowel disease [IBD]. METHODS: We examined the dorsum tongue microbiome by V1-V2 sequencing in a cohort of 156 treatment-naïve children diagnosed with IBD compared to 102 healthy control children. Microbiome changes over time following treatment were examined in a subset of patients and associations between IBD diagnosis and dysbiosis were explored. RESULTS: Analysis of community structure of the microbiome in tongue samples revealed that IBD samples diverged significantly from healthy control samples [PERMANOVA p = 0.0009] and exhibited a reduced abundance of Clostridia in addition to several major oral genera [Veillonella, Prevotella and Fusobacterium species] with an increased abundance of streptococci. This dysbiosis was more marked in patients with severe disease. Higher levels of the potential pathobionts Klebsiella and Pseudomonas spp. were also associated with IBD. In terms of predicted functions, the IBD oral microbiome was potentially more acidogenic and exhibited reduced capacity for B vitamin biosynthesis. We used a machine learning approach to develop a predictive model of IBD which exhibited a mean-prediction AUC [area under the ROC curve] of 0.762. Finally, we examined a subset of 53 patients following 12 months of therapy and could show resolution of oral dysbiosis as demonstrated by a shift towards a healthy community structure and a significant reduction in oral dysbiosis. CONCLUSION: Oral dysbiosis found in children with IBD is related to disease severity and resolves over time following successful IBD treatment.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Criança , Disbiose/microbiologia , Fezes/química , Doenças Inflamatórias Intestinais/diagnóstico , Gravidade do Paciente
9.
PLoS Pathog ; 18(6): e1010089, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35687592

RESUMO

Whether to commit limited cellular resources toward growth and proliferation, or toward survival and stress responses, is an essential determination made by Target of Rapamycin Complex 1 (TORC1) for a eukaryotic cell in response to favorable or adverse conditions. Loss of TORC1 function is lethal. The TORC1 inhibitor rapamycin that targets the highly conserved Tor kinase domain kills fungal pathogens like Candida albicans, but is also severely toxic to human cells. The least conserved region of fungal and human Tor kinases are the N-terminal HEAT domains. We examined the role of the 8 most N-terminal HEAT repeats of C. albicans Tor1. We compared nutritional- and stress responses of cells that express a message for N-terminally truncated Tor1 from repressible tetO, with cells expressing wild type TOR1 from tetO or from the native promoter. Some but not all stress responses were significantly impaired by loss of Tor1 N-terminal HEAT repeats, including those to oxidative-, cell wall-, and heat stress; in contrast, plasma membrane stress and antifungal agents that disrupt plasma membrane function were tolerated by cells lacking this Tor1 region. Translation was inappropriately upregulated during oxidative stress in cells lacking N-terminal Tor1 HEAT repeats despite simultaneously elevated Gcn2 activity, while activation of the oxidative stress response MAP kinase Hog1 was weak. Conversely, these cells were unable to take advantage of favorable nutritional conditions by accelerating their growth. Consuming oxygen more slowly than cells containing wild type TOR1 alleles during growth in glucose, cells lacking N-terminal Tor1 HEAT repeats additionally were incapable of utilizing non-fermentable carbon sources. They were also hypersensitive to inhibitors of specific complexes within the respiratory electron transport chain, suggesting that inefficient ATP generation and a resulting dearth of nucleotide sugar building blocks for cell wall polysaccharides causes cell wall integrity defects in these mutants. Genome-wide expression analysis of cells lacking N-terminal HEAT repeats showed dysregulation of carbon metabolism, cell wall biosynthetic enzymes, translational machinery biosynthesis, oxidative stress responses, and hyphal- as well as white-opaque cell type-associated genes. Targeting fungal-specific Tor1 N-terminal HEAT repeats with small molecules might selectively abrogate fungal viability, especially when during infection multiple stresses are imposed by the host immune system.


Assuntos
Candida albicans , Proteínas Fúngicas , Candida albicans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Hifas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Front Microbiol ; 11: 1514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793130
11.
J Oral Microbiol ; 12(1): 1743066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341761

RESUMO

Rothia mucilaginosa has been found at high abundance on oral leukoplakia (OLK). The ability of clinical isolates to produce acetaldehyde (ACH) from ethanol has not been investigated. The objective of the current study was to determine the capacity of R. mucilaginosa isolates recovered from OLK to generate ACH. Analysis of R. mucilaginosa genomes (n = 70) shows that this species does not normally encode acetaldehyde dehydrogenase (ALDH) required for detoxification of ACH. The predicted OLK metagenome also exhibited reduced ALDH coding capacity. We analysed ACH production in 8 isolates of R. mucilaginosa and showed that this species is capable of generating ACH in the presence of ethanol. The levels of ACH produced (mean = 53 µM) were comparable to those produced by Neisseria mucosa and Candida albicans in parallel assays. These levels were demonstrated to induce oxidative stress in cultured oral keratinocytes. This study shows that R. mucilaginosa can generate ACH from ethanol in vitro at levels which can induce oxidative stress. This organism likely contributes to oral ACH levels following alcohol consumption and the significance of the increased abundance of R. mucilaginosa in patients with potentially malignant disorders requires further investigation.

12.
Front Pediatr ; 8: 620254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33553076

RESUMO

The oral cavity is continuous with the gastrointestinal tract and in children, oral health may be closely linked with the overall health of the GI tract. In the case of pediatric Crohn's disease (CD), oral manifestations are an important clinical indicator of intestinal disease. Recent studies of the microbiome in IBD suggest that translocation of oral microbes to the gut may be a common feature of the microbial dysbiosis which is a signature of both CD and ulcerative colitis (UC). Murine studies suggest that translocation of oral bacteria and yeasts to the lower GI tract may trigger inflammation in susceptible hosts, providing a mechanistic link to the development of IBD. Conversely, some studies have shown that dysbiosis of the oral microbiome may occur, possibly as a result of inflammatory responses and could represent a useful source of biomarkers of GI health. This review summarizes our current knowledge of the oral microbiome in IBD and presents current hypotheses on the potential role of this community in the pathogenesis of these diseases.

13.
Oral Oncol ; 89: 30-33, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30732955

RESUMO

Recent advances in DNA sequencing technology have facilitated rapid advances in the analysis of the human microbiome and its role in human disease. Several studies have now shown that OSCC and some oral premalignant conditions are associated with alterations in the oral microbiome. These studies raise questions regarding the role of the oral microbiome in the progression of oral malignancies and whether microbiome change is a significant risk factor in the development of oral cancer. This short review summarises current knowledge in the field and highlights questions that require further investigation.


Assuntos
Carcinoma de Células Escamosas/genética , Microbiota/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia
14.
Curr Genet ; 65(3): 621-630, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30637479

RESUMO

Mediator complex has recently emerged as an important regulator of gene expression in pathogenic fungi. Mediator is a multi-subunit complex of polypeptides involved in transcriptional activation in eukaryotes, with roles including preinitiation complex (PIC) assembly and chromatin remodeling. Within the last decade, Mediator has been shown to play an integral role in regulating virulence gene expression and drug resistance in human fungal pathogens. In some fungi, specific Mediator subunits have been shown to be required for virulence. In Candida species, duplication and expansion of Mediator subunit encoding genes has occurred on at least three occasions (CgMED15 in C. glabrata and MED2/TLO in C. albicans and C. dubliniensis) suggesting important roles for Mediator in the evolution of these pathogens. This review summarises recent developments in our understanding of Mediator in fungal pathogens and the potential for the development of therapeutic drugs to target Mediator functions.


Assuntos
Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Fungos/patogenicidade , Regulação Fúngica da Expressão Gênica , Complexo Mediador/metabolismo , Virulência , Animais , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Humanos , Complexo Mediador/genética
15.
PLoS One ; 13(7): e0200852, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30028853

RESUMO

The TLO genes are a family of subtelomeric ORFs in the fungal pathogens Candida albicans and C. dubliniensis encoding a subunit of the Mediator complex homologous to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two. To investigate if expansion of the TLO repertoire in C. dubliniensis has an effect on phenotype and virulence we expressed three representative C. albicans TLO genes (TLOß2, TLOγ11 and TLOα12) in a wild type C. dubliniensis background, under the control of either their native or the ACT1 promoter. Expression of TLOß2 resulted in a hyperfilamentous phenotype, while overexpression of TLOγ11 and TLOα12 resulted in enhanced resistance to oxidative stress. Expression of all three TLO genes from the ACT1 promoter resulted in increased virulence in the Galleria infection model. In order to further investigate if individual TLO genes exhibit differences in function we expressed six representative C. albicans TLO genes in a C. dubliniensis Δtlo1/Δtlo2 double mutant. Differences were observed in the ability of the expressed CaTLOs to complement the various phenotypes of the mutant. All TLO genes with the exception of TLOγ7 could restore filamentation, however only TLOα9, γ11 and α12 could restore chlamydospore formation. Differences in the ability of CaTLO genes to restore growth in the presence of H2O2, calcofluor white, Congo red and at 42°C were observed. Only TLOα3 restored wild-type levels of virulence in the Galleria infection model. These data show that expansion of the TLO gene family in C. dubliniensis results in gain of function and that there is functional diversity amongst members of the gene family. We propose that this expansion of the TLO family contributes to the success of C. albicans as a commensal and opportunistic pathogen.


Assuntos
Candida albicans/genética , Candida/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Fases de Leitura Aberta , Estresse Oxidativo , Biofilmes , Candida/patogenicidade , Candida albicans/patogenicidade , Parede Celular/efeitos dos fármacos , Proteínas Fúngicas/genética , Peróxido de Hidrogênio/metabolismo , Complexo Mediador/genética , Fenótipo , Regiões Promotoras Genéticas , Virulência/genética
16.
Front Microbiol ; 8: 2391, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250055

RESUMO

Oral leukoplakia presents as a white patch on the oral mucosa and is recognized as having significant malignant potential. Although colonization of these patches with Candida albicans is common, little is known about the bacterial microbiota of these patches. In the current study we analyzed the microbiome of oral leukoplakia in 36 patients compared to healthy mucosal tissue from the same patients and healthy control subjects to determine if specific microbial enrichments could be identified early in the malignant process that could play a role in the progression of the disease. This was carried out by sequence analysis of the V1-V2 region of the bacterial 16S rRNA gene using the Illumina MiSeq. Oral leukoplakia exhibited increased abundance of Fusobacteria and reduced levels of Firmicutes (Metastats P < 0.01). Candida colonization was also more prevalent in leukoplakia patients relative to healthy controls (P = 0.025). Bacterial colonization patterns on oral leukoplakia were highly variable and five distinct bacterial clusters were discerned. These clusters exhibited co-occurrence of Fusobacterium, Leptotrichia, and Campylobacter species (Pearson P < 0.01), which is strikingly similar to the microbial co-occurrence patterns observed on colorectal cancers (Warren et al., 2013). Increased abundance of the acetaldehydogenic microorganism Rothia mucilaginosa was also apparent on oral leukoplakias from lingual sites (P 0.0012). Severe dysplasia was associated with elevated levels of Leptotrichia spp. and Campylobacter concisus (P < 0.05). Oral leukoplakia exhibits an altered microbiota that has similarities to the microbiome of colorectal cancer.

17.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152581

RESUMO

Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in eukaryotic cells and in the fungal pathogen Candida albicans regulates morphogenesis and nitrogen acquisition. Gtr1 encodes a highly conserved GTPase that in Saccharomyces cerevisiae regulates nitrogen sensing and TORC1 activation. Here, we characterize the role of C. albicans GTR1 in TORC1 activation and compare it with the previously characterized GTPase Rhb1. A homozygous gtr1/gtr1 mutant exhibited impaired TORC1-mediated phosphorylation of ribosomal protein S6 and increased susceptibility to rapamycin. Overexpression of GTR1 impaired nitrogen starvation-induced filamentous growth, MEP2 expression, and growth in bovine serum albumin as the sole nitrogen source. Both GTR1 and RHB1 were shown to regulate genes involved in ribosome biogenesis, amino acid biosynthesis, and expression of biofilm growth-induced genes. The rhb1/rhb1 mutant exhibited a different pattern of expression of Sko1-regulated genes and increased susceptibility to Congo red and calcofluor white. The homozygous gtr1/gtr1 mutant exhibited enhanced flocculation phenotypes and, similar to the rhb1/rhb1 mutant, exhibited enhanced biofilm formation on plastic surfaces. In summary, Gtr1 and Rhb1 link nutrient sensing and biofilm formation and this connectivity may have evolved to enhance the competitiveness of C. albicans in niches where there is intense competition with other microbes for space and nutrients. IMPORTANCECandida albicans is the major fungal pathogen of humans and is responsible for a wide range of infections, including life-threatening systemic infections in susceptible hosts. Target of rapamycin complex 1 (TORC1) is an essential regulator of metabolism in this fungus, and components of this complex are under increased investigation as targets for new antifungal drugs. The present study characterized the role of GTR1, encoding a putative GTPase, in TORC1 activation. This study shows that GTR1 encodes a protein required for activation of TORC1 activity in response to amino acids and regulation of nitrogen starvation responses. GTR1 mutants show increased cell-cell adhesion and biofilm formation and increased expression of genes involved in these processes. This study demonstrates that starvation responses and biofilm formation are coregulated by GTR1 and suggests that these responses are linked to compete with the microbiome for space and nutrients.

18.
Proc Natl Acad Sci U S A ; 114(24): 6346-6351, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28566496

RESUMO

The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos/metabolismo , Simportadores de Próton-Fosfato/metabolismo , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Deleção de Genes , Genes Fúngicos , Hifas/genética , Hifas/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Simportadores de Próton-Fosfato/antagonistas & inibidores , Simportadores de Próton-Fosfato/genética , Regulon , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
19.
PLoS Genet ; 12(10): e1006373, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27741243

RESUMO

Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rather than transcription factors and their specific targets. A key genomic difference between C. albicans and its less-virulent relatives, including its closest relative C. dubliniensis, is the unique expansion of the TLO (TeLOmere-associated) gene family in C. albicans. Individual Tlo proteins are fungal-specific subunits of Mediator, a large multi-subunit eukaryotic transcriptional co-activator complex. This amplification results in a large pool of 'free,' non-Mediator associated, Tlo protein present in C. albicans, but not in C. dubliniensis or other ascomycetes with attenuated virulence. We show that engineering a large 'free' pool of the C. dubliniensis Tlo2 (CdTlo2) protein in C. dubliniensis, through overexpression, results in a number of filamentation phenotypes typically associated only with C. albicans. The amplitude of these phenotypes is proportional to the amount of overexpressed CdTlo2 protein. Overexpression of other C. dubliniensis and C. albicans Tlo proteins do result in these phenotypes. Tlo proteins and their orthologs contain a Mediator interaction domain, and a potent transcriptional activation domain. Nuclear localization of the CdTlo2 activation domain, facilitated naturally by the Tlo Mediator binding domain or artificially through an appended nuclear localization signal, is sufficient for the CdTlo2 overexpression phenotypes. A C. albicans med3 null mutant causes multiple defects including the inability to localize Tlo proteins to the nucleus and reduced virulence in a murine systemic infection model. Our data supports a model in which the activation domain of 'free' Tlo protein competes with DNA bound transcription factors for targets that regulate key aspects of C. albicans cell physiology.


Assuntos
Candida albicans/genética , Candidíase/genética , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Animais , Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Candidíase/microbiologia , Candidíase/patologia , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Regulação Fúngica da Expressão Gênica , Genômica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Camundongos , Fenótipo , Proteínas de Ligação a Telômeros/biossíntese
20.
J Cell Physiol ; 231(4): 798-816, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26264761

RESUMO

Direct application of histone-deacetylase-inhibitors (HDACis) to dental pulp cells (DPCs) induces chromatin changes, promoting gene expression and cellular-reparative events. We have previously demonstrated that HDACis (valproic acid, trichostatin A) increase mineralization in dental papillae-derived cell-lines and primary DPCs by stimulation of dentinogenic gene expression. Here, we investigated novel genes regulated by the HDACi, suberoylanilide hydroxamic acid (SAHA), to identify new pathways contributing to DPC differentiation. SAHA significantly compromised DPC viability only at relatively high concentrations (5 µM); while low concentrations (1 µM) SAHA did not increase apoptosis. HDACi-exposure for 24 h induced mineralization-per-cell dose-dependently after 2 weeks; however, constant 14d SAHA-exposure inhibited mineralization. Microarray analysis (24 h and 14 days) of SAHA exposed cultures highlighted that 764 transcripts showed a significant >2.0-fold change at 24 h, which reduced to 36 genes at 14 days. 59% of genes were down-regulated at 24 h and 36% at 14 days, respectively. Pathway analysis indicated SAHA increased expression of members of the matrix metalloproteinase (MMP) family. Furthermore, SAHA-supplementation increased MMP-13 protein expression (7 d, 14 days) and enzyme activity (48 h, 14 days). Selective MMP-13-inhibition (MMP-13i) dose-dependently accelerated mineralization in both SAHA-treated and non-treated cultures. MMP-13i-supplementation promoted expression of several mineralization-associated markers, however, HDACi-induced cell migration and wound healing were impaired. Data demonstrate that short-term low-dose SAHA-exposure promotes mineralization in DPCs by modulating gene pathways and tissue proteases. MMP-13i further increased mineralization-associated events, but decreased HDACi cell migration indicating a specific role for MMP-13 in pulpal repair processes. Pharmacological inhibition of HDAC and MMP may provide novel insights into pulpal repair processes with significant translational benefit. J. Cell. Physiol. 231: 798-816, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Polpa Dentária/enzimologia , Polpa Dentária/patologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Fatores de Tempo , Vorinostat
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...