Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 107(1): 167-177, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406813

RESUMO

Erythroblast maturation in mammals is dependent on organelle clearance throughout terminal erythropoiesis. We studied the role of the outer mitochondrial membrane protein voltage-dependent anion channel-1 (VDAC1) in human terminal erythropoiesis. We show that short hairpin (shRNA)-mediated downregulation of VDAC1 accelerates erythroblast maturation. Thereafter, erythroblasts are blocked at the orthochromatic stage, exhibiting a significant decreased level of enucleation, concomitant with an increased cell death. We demonstrate that mitochondria clearance starts at the transition from basophilic to polychromatic erythroblast, and that VDAC1 downregulation induces the mitochondrial retention. In damaged mitochondria from non-erythroid cells, VDAC1 was identified as a target for Parkin-mediated ubiquitination to recruit the phagophore. Here, we showed that VDAC1 is involved in phagophore's membrane recruitment regulating selective mitophagy of still functional mitochondria from human erythroblasts. These findings demonstrate for the first time a crucial role for VDAC1 in human erythroblast terminal differentiation, regulating mitochondria clearance.


Assuntos
Mitocôndrias , Mitofagia , Animais , Apoptose , Diferenciação Celular , Eritroblastos/metabolismo , Eritropoese , Humanos , Mamíferos , Mitocôndrias/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
2.
Br J Haematol ; 193(5): 988-993, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33754349

RESUMO

Sickle cell disease (SCD) is characterised by chronic haemolysis and oxidative stress. Herein, we investigated 30 SCD patients and found 40% with elevated mitochondria levels (SS-mito+ ) in their mature red blood cells, while 60% exhibit similar mitochondria levels compared to the AA group (SS-mito- ). The SS-mito+ patients are characterised by higher reticulocytosis and total bilirubin levels, lower foetal haemoglobin, and non-functional mitochondria. Interestingly, we demonstrated decreased levels of mitophagy inducers, PINK1 and NIX, and higher levels of HSP90 chaperone in their red cells. Our results highlighted for the first time an abnormal retention of mitochondria in SCD linked with mitophagy-related proteins.


Assuntos
Anemia Falciforme/sangue , Eritrócitos/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Adulto , Anemia Falciforme/patologia , Bilirrubina/sangue , Eritrócitos/patologia , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Mitocôndrias/patologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Reticulocitose , Proteínas Supressoras de Tumor/metabolismo
3.
Front Physiol ; 12: 791691, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222062

RESUMO

Throughout mammal erythroid differentiation, erythroblasts undergo enucleation and organelle clearance becoming mature red blood cell. Organelles are cleared by autophagic pathways non-specifically targeting organelles and cytosolic content or by specific mitophagy targeting mitochondria. Mitochondrial functions are essential to coordinate metabolism reprogramming, cell death, and differentiation balance, and also synthesis of heme, the prosthetic group needed in hemoglobin assembly. In mammals, mitochondria subcellular localization and mitochondria interaction with other structures as endoplasmic reticulum and nucleus might be of importance for the removal of the nucleus, that is, the enucleation. Here, we aim to characterize by electron microscopy the changes in ultrastructure of cells over successive stages of human erythroblast differentiation. We focus on mitochondria to gain insights into intracellular localization, ultrastructure, and contact with other organelles. We found that mitochondria are progressively cleared with a significant switch between PolyE and OrthoE stages, acquiring a rounded shape and losing contact sites with both ER (MAM) and nucleus (NAM). We studied intracellular vesicle trafficking and found that endosomes and MVBs, known to be involved in iron traffic and heme synthesis, are increased during BasoE to PolyE transition; autophagic structures such as autophagosomes increase from ProE to OrthoE stages. Finally, consistent with metabolic switch, glycogen accumulation was observed in OrthoE stage.

4.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260618

RESUMO

Translocator protein (TSPO) and voltage dependent anion channels (VDAC) are two proteins forming a macromolecular complex in the outer mitochondrial membrane that is involved in pleiotropic functions. Specifically, these proteins were described to regulate the clearance of damaged mitochondria by selective mitophagy in non-erythroid immortalized cell lines. Although it is well established that erythroblast maturation in mammals depends on organelle clearance, less is known about mechanisms regulating this clearance throughout terminal erythropoiesis. Here, we studied the effect of TSPO1 downregulation and the action of Ro5-4864, a drug ligand known to bind to the TSPO/VDAC complex interface, in ex vivo human terminal erythropoiesis. We found that both treatments delay mitochondrial clearance, a process associated with reduced levels of the PINK1 protein, which is a key protein triggering canonical mitophagy. We also observed that TSPO1 downregulation blocks erythroblast maturation at the orthochromatic stage, decreases the enucleation rate, and increases cell death. Interestingly, TSPO1 downregulation does not modify reactive oxygen species (ROS) production nor intracellular adenosine triphosphate (ATP) levels. Ro5-4864 treatment recapitulates these phenotypes, strongly suggesting an active role of the TSPO/VDAC complex in selective mitophagy throughout human erythropoiesis. The present study links the function of the TSPO/VDAC complex to the PINK1/Parkin-dependent mitophagy induction during terminal erythropoiesis, leading to the proper completion of erythroid maturation.


Assuntos
Núcleo Celular/metabolismo , Regulação para Baixo , Eritropoese , Mitocôndrias/metabolismo , Mitofagia , Receptores de GABA/metabolismo , Benzodiazepinonas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Humanos , Cinética , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fenótipo , RNA Interferente Pequeno/metabolismo
5.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722249

RESUMO

Human erythropoiesis is a complex process leading to the production of mature, enucleated erythrocytes (RBCs). It occurs mainly at bone marrow (BM), where hematopoietic stem cells (HSCs) are engaged in the early erythroid differentiation to commit into erythroid progenitor cells (burst-forming unit erythroid (BFU-E) and colony-forming unit erythroid (CFU-E)). Then, during the terminal differentiation, several erythropoietin-induced signaling pathways trigger the differentiation of CFU-E on successive stages from pro-erythroblast to reticulocytes. The latter are released into the circulation, finalizing their maturation into functional RBCs. This process is finely regulated by the physiological environment including the erythroblast-macrophage interaction in the erythroblastic island (EBI). Several human diseases have been associated with ineffective erythropoiesis, either by a defective or an excessive production of RBCs, as well as an increase or a hemoglobinization defect. Fully understanding the production of mature red blood cells is crucial for the comprehension of erythroid pathologies as well as to the field of transfusion. Many experimental approaches have been carried out to achieve a complete differentiation in vitro to produce functional biconcave mature RBCs. However, the various protocols usually fail to achieve enough quantities of completely mature RBCs. In this review, we focus on the evolution of erythropoiesis studies over the years, taking special interest in efforts that were made to include the microenvironment and erythroblastic islands paradigm. These more physiological approaches will contribute to a deeper comprehension of erythropoiesis, improve the treatment of dyserythropoietic disorders, and break through the barriers in massive RBCs production for transfusion.


Assuntos
Eritroblastos/metabolismo , Eritrócitos/metabolismo , Eritropoese , Eritropoetina/metabolismo , Modelos Biológicos , Nicho de Células-Tronco , Eritroblastos/patologia , Eritrócitos/patologia , Humanos
6.
Int J Mol Sci ; 19(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308949

RESUMO

Two main isoforms of the Translocator Protein (TSPO) have been identified. TSPO1 is ubiquitous and is mainly present at the outer mitochondrial membrane of most eukaryotic cells, whereas, TSPO2 is specific to the erythroid lineage, located at the plasma membrane, the nucleus, and the endoplasmic reticulum. The design of specific tools is necessary to determine the molecular associations and functions of TSPO, which remain controversial nowadays. We recently demonstrated that TSPO2 is involved in a supramolecular complex of the erythrocyte membrane, where micromolar doses of the classical TSPO ligands induce ATP release and zinc protoporphyrin (ZnPPIX) transport. In this work, three newly-designed ligands (NCS1016, NCS1018, and NCS1026) were assessed for their ability to modulate the functions of various erythrocyte's and compare them to the TSPO classical ligands. The three new ligands were effective in reducing intraerythrocytic Plasmodium growth, without compromising erythrocyte survival. While NCS1016 and NCS1018 were the most effective ligands in delaying sorbitol-induced hemolysis, NCS1016 induced the highest uptake of ZnPPIX and NCS1026 was the only ligand inhibiting the cholesterol uptake. Differential effects of ligands are probably due, not only, to ligand features, but also to the dynamic interaction of TSPO with various partners at the cell membrane. Further studies are necessary to fully understand the mechanisms of the TSPO's complex activation.


Assuntos
Trifosfato de Adenosina/metabolismo , Colesterol/metabolismo , Eritrócitos/metabolismo , Protoporfirinas/metabolismo , Receptores de GABA/metabolismo , Transporte Biológico , Hemólise , Humanos , Ligantes , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Espécies Reativas de Oxigênio , Sorbitol/farmacologia
7.
Sci Rep ; 8(1): 11384, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061676

RESUMO

We previously demonstrated that the translocase protein TSPO2 together with the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT) were involved in a membrane transport complex in human red blood cells (RBCs). Because VDAC was proposed as a channel mediating ATP release in RBCs, we used TSPO ligands together with VDAC and ANT inhibitors to test this hypothesis. ATP release was activated by TSPO ligands, and blocked by inhibitors of VDAC and ANT, while it was insensitive to pannexin-1 blockers. TSPO ligand increased extracellular ATP (ATPe) concentration by 24-59% over the basal values, displaying an acute increase in [ATPe] to a maximal value, which remained constant thereafter. ATPe kinetics were compatible with VDAC mediating a fast but transient ATP efflux. ATP release was strongly inhibited by PKC and PKA inhibitors as well as by depleting intracellular cAMP or extracellular Ca2+, suggesting a mechanism involving protein kinases. TSPO ligands favoured VDAC polymerization yielding significantly higher densities of oligomeric bands than in unstimulated cells. Polymerization was partially inhibited by decreasing Ca2+ and cAMP contents. The present results show that TSPO ligands induce polymerization of VDAC, coupled to activation of ATP release by a supramolecular complex involving VDAC, TSPO2 and ANT.


Assuntos
Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Eritrócitos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Multimerização Proteica , Canais de Ânion Dependentes de Voltagem/metabolismo , Translocador 1 do Nucleotídeo Adenina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Cinética , Ligantes , Modelos Biológicos , Polimerização , Proteína Quinase C/metabolismo , Receptores de GABA/metabolismo
8.
Front Physiol ; 8: 1076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29311991

RESUMO

Erythropoiesis occurs mostly in bone marrow and ends in blood stream. Mature red blood cells are generated from multipotent hematopoietic stem cells, through a complex maturation process involving several morphological changes to produce a highly functional specialized cells. In mammals, terminal steps involved expulsion of the nucleus from erythroblasts that leads to the formation of reticulocytes. In order to produce mature biconcave red blood cells, organelles and ribosomes are selectively eliminated from reticulocytes as well as the plasma membrane undergoes remodeling. The mechanisms involved in these last maturation steps are still under investigation. Enucleation involves dramatic chromatin condensation and establishment of the nuclear polarity, which is driven by a rearrangement of actin cytoskeleton and the clathrin-dependent generation of vacuoles at the nuclear-cytoplasmic junction. This process is favored by interaction between the erythroblasts and macrophages at the erythroblastic island. Mitochondria are eliminated by mitophagy. This is a macroautophagy pathway consisting in the engulfment of mitochondria into a double-membrane structure called autophagosome before degradation. Several mice knock-out models were developed to identify mitophagy-involved proteins during erythropoiesis, but whole mechanisms are not completely determined. Less is known concerning the clearance of other organelles, such as smooth and rough ER, Golgi apparatus and ribosomes. Understanding the modulators of organelles clearance in erythropoiesis may elucidate the pathogenesis of different dyserythropoietic diseases such as myelodysplastic syndrome, leukemia and anemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...