Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 61(9): 3263-3271, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35300272

RESUMO

This work focuses on the electrochemical production of hydrogen peroxide in supporting electrolytes containing perchlorate ions for being used as a reagent in the reduction of chlorates to produce chlorine dioxide, as a first step in the manufacture of portable ClO2 production devices. This study evaluates the effect of the current density, pressure, and temperature on the production of hydrogen peroxide, and concentrations over 400 mg L-1 are reached. The average rate for the formation of hydrogen peroxide is 9.85 mg h-1, and the effect of increasing electrolyte concentration (3.0 and 30.0 g L-1 perchloric acid), intensity, and pressure results in values of, respectively, -2.99, -4.49, and +7.73 mg h-1. During the manufacturing process, hydrogen peroxide is decomposed through two mechanisms. The average destruction rate is 1.93 mg h-1, and the effects of the three factors results in values of, respectively, +0.07, +0.11, and -0.12 mg h-1. Solutions of this hydrogen peroxide produced electrochemically in a perchloric acid aqueous electrolyte were used to reduce chlorates in strongly acidic media and produce chlorine dioxide. Conversions of around 100% were obtained, demonstrating that this electrochemical product can be used efficiently to reduce chlorates to chlorine dioxide.

2.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833906

RESUMO

The inefficiency of conventional biological processes to remove pharmaceutical compounds (PhCs) in wastewater is leading to their accumulation in aquatic environments. These compounds are characterized by high toxicity, high antibiotic activity and low biodegradability, and their presence is causing serious environmental risks. Because much of the PhCs consumed by humans are excreted in the urine, hospital effluents have been considered one of the main routes of entry of PhCs into the environment. In this work, a critical review of the technologies employed for the removal of PhCs in hospital wastewater was carried out. This review provides an overview of the current state of the developed technologies for decreasing the chemical risks associated with the presence of PhCs in hospital wastewater or urine in the last years, including conventional treatments (filtration, adsorption, or biological processes), advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs).


Assuntos
Técnicas Eletroquímicas/métodos , Resíduos de Serviços de Saúde/prevenção & controle , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Antibacterianos/isolamento & purificação , Antibacterianos/urina , Biodegradação Ambiental , Resíduos de Drogas/isolamento & purificação , Hospitais , Humanos , Resíduos de Serviços de Saúde/análise , Eliminação de Resíduos de Serviços de Saúde/métodos , Consórcios Microbianos/fisiologia , Oxirredução , Urina/química , Eliminação de Resíduos Líquidos/métodos
3.
Chemosphere ; 284: 131303, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34182289

RESUMO

Here, the antibiotic levofloxacin (LFX) widely used and detected in the environment was degraded by photoelectrolysis using a new electrode based on zinc oxide (ZnO) and a mixture of mixed oxides of ruthenium and titanium (MMO). The influence of the potential and irradiation of UV light was investigated in the photostability of the Ti/MMO/ZnO electrode and in the degradation of the antibiotic. The experiments were conducted at different pH values (5.0, 7.0 and 9.0) in sodium sulfate solution in a glass reactor with central lighting. It was observed that the new Ti/MMO/ZnO electrode has good stability under light irradiation and potential, presenting excellent photocurrent and high photoactivity in LFX photoelectrolysis. The removal efficiency of the compound was directly related to the formation of oxidizing species in solution, the photo-generated charges on the electrode and the electrostatic characteristics of the molecule. The mineralization rate, the formation of reaction intermediates and short chain carboxylic acids (acetic, maleic, oxalic and oxamic acid), in addition to the formation of N-mineral species (NO3- and NH4+) was dependent on the pH of the solution and the investigated processes: photoelectrolysis was more efficient than photolysis, which, in turn, was more efficient than electrolysis. The synergistic effect and the high rate of degradation of LFX after 4.0 h of treatment (100%) observed in photoelectrolysis at alkaline pH, was associated with the high stability of the Ti/MMO/ZnO electrode at this pH, the photoactivation of sulfate ions and the ease generation of oxidizing radicals, such as OH.


Assuntos
Poluentes Químicos da Água , Óxido de Zinco , Catálise , Eletrodos , Eletrólise , Levofloxacino , Titânio , Poluentes Químicos da Água/análise
4.
Chemosphere ; 270: 129344, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33395582

RESUMO

The treatment of hospital wastewater is very complex, so treating polluted human urine is a significant challenge. Here, we tested a novel MMO-Ti/RuO2IrO2 electrode to reduce the ecotoxicity risk of hospital urines contaminated with antibiotics. This electrode was used as the anode in electro-Fenton (EF) and photoelectro-Fenton (PhEF) processes. The results were compared with those obtained using the boron-doped diamond (BDD) anode, as well as those obtained by a conventional Fenton oxidation. In order to analyze the performance of the processes, the treatments were evaluated on the subject of Penicilin G (PenG) removal, toxicity (using a standardized method with Vibrio Fisheri), and antibiotic activity (Enterococcus faecalis as the target bacterium). The results reveal that PenG degrades in the following order: Fenton < EF < PhEF. The best results are found for the MMO-PhEF, which completely removed PenG, decreased 96% of toxicity, and completely removed antibiotic activity. Besides, for comparison, tests were performed with BDD, and results point out the higher convenience of the new electrode in terms of acceptable use of energy because the effluents generated can be further degraded in an urban wastewater treatment plant. Because of that, MMO-RuO2-IrO2 emerges as a promising cost-effective material for the pre-treatment of hospital urine effluents.


Assuntos
Titânio , Poluentes Químicos da Água , Antibacterianos/toxicidade , Diamante , Eletrodos , Humanos , Peróxido de Hidrogênio , Oxirredução , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 736: 139536, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32485374

RESUMO

The objective of this study is to understand the influence of the characteristics of boron-doped diamond anodes on the degradation of Penicillin G contained in urine. Therefore, five commercial BDD anodes with different boron doping levels (100 ppm - 8000 ppm) were studied. These electrodes were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and electrolysis. The boron doping was found to correlate well with the electrochemical properties of the electrodes, and results indicate a different behavior in drug degradation. The improvement in the toxicity and the reduction of the antibiotic effect of urine were the most innovative inputs monitored. For this, the concentration of Penicillin G, the toxicity toward Vibrio fisheri, and the antibiotic effect in Enterococcus faecalis were monitored. The best results were found for the BDD with a boron content of 200 ppm, capable of removing 100% of the antibiotic, reducing toxicity by 90%, and eradicating the antibiotic effect. These results indicate that low doping levels are more efficient for urine removal by anodic oxidation.


Assuntos
Dopagem Esportivo , Poluentes Químicos da Água/análise , Boro , Diamante , Eletrodos , Oxirredução , Penicilina G
6.
Sci Total Environ ; 725: 138430, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298888

RESUMO

This work focuses on improving the biodegradability of hospital urines polluted with antibiotics by electrochemical advanced oxidation processes (EAOPs). To do this, chloramphenicol (CAP) has been used as a model compound and the influence of anodic material (Boron Doped Diamond (BDD) and Mixed Metal Oxide (MMO)) and current density (1.25-5 mA cm-2) on the toxicity and the biodegradability was evaluated. Results show that a complete CAP removal was attained using BDD anodes, being the process more efficient at the lowest current density tested (1.25 mA cm-2). Conversely, after passing 4 Ah dm-3, only 35% of CAP removal is reached using MMO anodes, regardless of the current density applied. Furthermore, a kinetic study demonstrated that there is a clear competitive oxidation between the target antibiotic and the organic compounds naturally contained in urine, regardless the current density and the anode material used. During the first stages of the electrolysis, acute toxicity is around 1% EC50 but it increases once CAP and its organic intermediates have been degraded. The formation and accumulation of inorganic oxidants may justify the remaining acute toxicity. This also helps to explain the trend observed in the rapid biodegradability assays. Finally, a 60% of standard biodegradability (Zahn-Wellens test) was achieved which suggests that electrochemical oxidation with BDD anodes could be the most appropriate technology to reduce the hazard of hospital urines at the operating conditions tested.


Assuntos
Cloranfenicol , Poluentes Químicos da Água , Diamante , Eletrodos , Eletrólise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...