Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Mol Genet Metab ; 142(4): 108530, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968673

RESUMO

Phosphoglucomutase-1-congenital disorder of glycosylation (PGM1-CDG) is a rare genetic disorder caused by biallelic variants in the PGM1 gene, leading to the deficiency of the PGM1 enzyme. The most common clinical presentations include muscle involvement, failure to thrive, cleft palate, and cardiac involvement. Abnormal serum N-glycosylation, hypoglycemia, and liver function abnormalities including coagulation abnormalities are the most common laboratory abnormalities. While PGM1-CDG has been extensively studied, little is known about the extent of the coagulation abnormalities in individuals with PGM1-CDG. Unlike most CDG, some symptoms of PGM1-CDG are treatable with D-galactose (D-gal) supplementation, though reliable clinical endpoints are necessary to appropriately evaluate the potential improvement with D-gal in PGM1-CDG. Here, we aimed to describe the incidence of coagulation abnormalities in PGM1-CDG and their evolution, their relation to clinical events, and the ability of D-gal treatment to improve them. A retrospective analysis was conducted on 73 reported individuals. All individuals had a molecularly confirmed PGM1-CDG diagnosis. All incidences of antithrombin (AT), aPTT, PT, factor (F) XI, FX, FIX, FVII, protein C and protein S data and major clinical events related to coagulation abnormalities, were collected. Coagulation information was available for only 58.9 % of the reported individuals, out of which 67.4 % of PGM1-CDG individuals were reported to have abnormalities. The most frequently observed abnormality was AT (mean: 30.8% R:80-120 %) deficiency. Four individuals had major thrombotic events. Coagulation status on D-gal treatment, were reported in 19 individuals. Several factors showed improvement including AT (mean: 64.5 %), indicating galactose is beneficial in treating coagulation abnormalities in PGM1-CDG. Due to the scarcity of the reported data on coagulation parameters, we also evaluated data collected in sixteen PGM1-CDG individuals enrolled in the FCDGC Natural History Study. Longitudinal data showed improvements in several coagulant parameters and disease severity improved for almost all patients of whom we had multiple datapoints on D-gal. AT showed significant improvement on D-gal. We conclude that coagulation abnormalities are frequently present in PGM1-CDG and show improvement on D-gal. We recommend coagulation parameters should be routinely checked in individuals with PGM1-CDG or suspected of having PGM1-CDG. Finally, AT may be used as a primary or secondary clinical endpoint for upcoming clinical trials in PGM1-CDG individuals.

2.
Mol Genet Metab ; 142(4): 108513, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917675

RESUMO

INTRODUCTION: Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS: Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS: Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS: In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.

3.
Mol Genet Metab ; 142(2): 108472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703411

RESUMO

ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/complicações , Glicosilação , Fenótipo , Mutação , Hipotonia Muscular/genética , Hipotonia Muscular/terapia , Hipotonia Muscular/diagnóstico , Guias de Prática Clínica como Assunto , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/terapia , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Convulsões/genética , Convulsões/terapia , Convulsões/diagnóstico , N-Acetilglucosaminiltransferases
4.
Mol Genet Metab ; 142(3): 108477, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805916

RESUMO

Congenital disorders of glycosylation (CDG) are a group of rare, often multi-systemic genetic disorders that result from disturbed protein and lipid glycosylation. SSR4-CDG is an ultra-rare, comparably mild subtype of CDG, presenting mostly in males. It is caused by pathogenic variants in the SSR4 gene, which is located on the X chromosome. SSR4 (signal sequence receptor protein 4) is a subunit of the translocon-associated protein (TRAP) complex, a structure that is needed for the translocation of proteins across the ER membrane. A deficiency of SSR4 leads to disturbed N-linked glycosylation of proteins in the endoplasmic reticulum. Here, we review the most common clinical, biochemical and genetic features of 18 previously published individuals and report four new cases diagnosed with SSR4-CDG, including the first adult affected by this disorder. Based on our review, developmental delay, speech delay, intellectual disability, muscular hypotonia, microcephaly and distinct facial features are key symptoms of SSR4-CDG that are present in all affected individuals. Although these symptoms overlap with many other neurodevelopmental disorders, their combination with additional clinical features, and a quite distinguishable facial appearance of affected individuals make this disorder a potentially recognizable type of CDG. Additional signs and symptoms include failure to thrive, feeding difficulties, connective tissue involvement, gastrointestinal problems, skeletal abnormalities, seizures and, in some cases, significant behavioral abnormalities. Due to lack of awareness of this rare disorder, and since biochemical testing can be normal in affected individuals, most are diagnosed through genetic studies, such as whole exome sequencing. With this article, we expand the phenotype of SSR4-CDG to include cardiac symptoms, laryngeal abnormalities, and teleangiectasia. We also provide insights into the prognosis into early adulthood and offer recommendations for adequate management and care. We emphasize the great need for causal therapies, as well as effective symptomatic therapies addressing the multitude of symptoms in this disease. In particular, behavioral problems can severely affect quality of life in individuals diagnosed with SSR4-CDG and need special attention. Finally, we aim to improve guidance and education for affected families and treating physicians and create a basis for future research in this disorder.


Assuntos
Defeitos Congênitos da Glicosilação , Adulto , Humanos , Proteínas de Ligação ao Cálcio , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/diagnóstico , Glicosilação , Glicoproteínas de Membrana , Mutação , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos/genética
5.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735264

RESUMO

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Manose , Humanos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Defeitos Congênitos da Glicosilação/metabolismo , Manose/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Masculino , Fucose/metabolismo , Glicosilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Feminino , Proteômica
6.
Mol Genet Metab ; 142(2): 108487, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733638

RESUMO

Phosphomannomutase 2 (PMM2) converts mannose-6-phospahate to mannose-1-phosphate; the substrate for GDP-mannose, a building block of the glycosylation biosynthetic pathway. Pathogenic variants in the PMM2 gene have been shown to be associated with protein hypoglycosylation causing PMM2-congenital disorder of glycosylation (PMM2-CDG). While mannose supplementation improves glycosylation in vitro, but not in vivo, we hypothesized that liposomal delivery of mannose-1-phosphate could increase the stability and delivery of the activated sugar to enter the targeted compartments of cells. Thus, we studied the effect of liposome-encapsulated mannose-1-P (GLM101) on global protein glycosylation and on the cellular proteome in skin fibroblasts from individuals with PMM2-CDG, as well as in individuals with two N-glycosylation defects early in the pathway, namely ALG2-CDG and ALG11-CDG. We leveraged multiplexed proteomics and N-glycoproteomics in fibroblasts derived from different individuals with various pathogenic variants in PMM2, ALG2 and ALG11 genes. Proteomics data revealed a moderate but significant change in the abundance of some of the proteins in all CDG fibroblasts upon GLM101 treatment. On the other hand, N-glycoproteomics revealed the GLM101 treatment enhanced the expression levels of several high-mannose and complex/hybrid glycopeptides from numerous cellular proteins in individuals with defects in PMM2 and ALG2 genes. Both PMM2-CDG and ALG2-CDG exhibited several-fold increase in glycopeptides bearing Man6 and higher glycans and a decrease in Man5 and smaller glycan moieties, suggesting that GLM101 helps in the formation of mature glycoforms. These changes in protein glycosylation were observed in all individuals irrespective of their genetic variants. ALG11-CDG fibroblasts also showed increase in high mannose glycopeptides upon treatment; however, the improvement was not as dramatic as the other two CDG. Overall, our findings suggest that treatment with GLM101 overcomes the genetic block in the glycosylation pathway and can be used as a potential therapy for CDG with enzymatic defects in early steps in protein N-glycosylation.


Assuntos
Defeitos Congênitos da Glicosilação , Fibroblastos , Lipossomos , Manosefosfatos , Fosfotransferases (Fosfomutases) , Humanos , Glicosilação/efeitos dos fármacos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Manosefosfatos/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases (Fosfomutases)/deficiência , Proteômica , Manose/metabolismo
7.
JIMD Rep ; 65(3): 135-143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736633

RESUMO

ALG1-CDG is a rare, clinically variable metabolic disease, caused by the defect of adding the first mannose (Man) to N-acetylglucosamine (GlcNAc2)-pyrophosphate (PP)-dolichol to the growing oligosaccharide chain, resulting in impaired N-glycosylation of proteins. N-glycosylation has a key role in functionality, stability, and half-life of most proteins. Therefore, congenital defects of glycosylation typically are multisystem disorders. Here we report a 3-year-old patient with severe neurological, cardiovascular, respiratory, musculoskeletal and gastrointestinal symptoms. ALG1-CDG was suggested based on exome sequencing and Western blot analysis. Despite her severe clinical manifestations and genetic diagnosis, serum transferrin glycoform analysis was normal. Western blot analysis of highly glycosylated proteins in fibroblasts revealed decreased intercellular adhesion molecule 1 (ICAM1), but normal lysosomal associated membrane protein 1 and 2 (LAMP1 and LAMP2) expression levels. Glycoproteomics in fibroblasts showed the presence of the abnormal tetrasacharide. Reviewing the literature, we found 86 reported ALG1-CDG patients, but only one with normal transferrin analysis. Based on our results we would like to highlight the importance of multiple approaches in diagnosing ALG1-CDG, as normal serum transferrin glycosylation or other biomarkers with normal expression levels can occur.

8.
Front Genet ; 15: 1363558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770420

RESUMO

This report outlines the case of a child affected by a type of congenital disorder of glycosylation (CDG) known as ALG2-CDG (OMIM 607906), presenting as a congenital myasthenic syndrome (CMS) caused by variants identified in ALG2, which encodes an α1,3-mannosyltransferase (EC 2.4.1.132) involved in the early steps of N-glycosylation. To date, fourteen cases of ALG2-CDG have been documented worldwide. From birth, the child experienced perinatal asphyxia, muscular weakness, feeding difficulties linked to an absence of the sucking reflex, congenital hip dislocation, and hypotonia. Over time, additional complications emerged, such as inspiratory stridor, gastroesophageal reflux, low intake, recurrent seizures, respiratory infections, an inability to maintain the head upright, and a global developmental delay. Whole genome sequencing (WGS) revealed the presence of two ALG2 variants in compound heterozygosity: a novel variant c.1055_1056delinsTGA p.(Ser352Leufs*3) and a variant of uncertain significance (VUS) c.964C>A p.(Pro322Thr). Additional studies, including determination of carbohydrate-deficient transferrin (CDT) revealed a mild type I CDG pattern and the presence of an abnormal transferrin glycoform containing a linear heptasaccharide consisting of one sialic acid, one galactose, one N-acetyl-glucosamine, two mannoses and two N-acetylglucosamines (NeuAc-Gal-GlcNAc-Man2-GlcNAc2), ALG2-CDG diagnostic biomarker, confirming the pathogenicity of these variants.

9.
Mol Genet Metab ; 142(1): 108469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564972

RESUMO

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.


Assuntos
Proteínas de Transporte Vesicular , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Mutação de Sentido Incorreto , Fenótipo , Proteínas de Transporte Vesicular/genética , Relatos de Casos como Assunto
10.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587076

RESUMO

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Complemento C4 , Glicopeptídeos , Biomarcadores , Polissacarídeos
11.
Sci Rep ; 14(1): 5755, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459093

RESUMO

Identifying disease predictors through advanced statistical models enables the discovery of treatment targets for schizophrenia. In this study, a multifaceted clinical and laboratory analysis was conducted, incorporating magnetic resonance spectroscopy with immunology markers, psychiatric scores, and biochemical data, on a cohort of 45 patients diagnosed with schizophrenia and 51 healthy controls. The aim was to delineate predictive markers for diagnosing schizophrenia. A logistic regression model was used, as utilized to analyze the impact of multivariate variables on the prevalence of schizophrenia. Utilization of a stepwise algorithm yielded a final model, optimized using Akaike's information criterion and a logit link function, which incorporated eight predictors (White Blood Cells, Reactive Lymphocytes, Red Blood Cells, Glucose, Insulin, Beck Depression score, Brain Taurine, Creatine and Phosphocreatine concentration). No single factor can reliably differentiate between healthy patients and those with schizophrenia. Therefore, it is valuable to simultaneously consider the values of multiple factors and classify patients using a multivariate model.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Creatina , Fosfocreatina , Espectroscopia de Ressonância Magnética , Encéfalo
12.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430517

RESUMO

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação
13.
Proteomics ; : e2400012, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470198

RESUMO

Asparagine-linked glycosylation 1 protein is a ß-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2 ) trisaccharides (Hex-HexNAc2 ) and novel tetrasaccharides (NeuAc-Hex-HexNAc2 ) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.

14.
Hum Genet ; 143(5): 649-666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538918

RESUMO

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Assuntos
Genômica , Humanos , Genômica/métodos , Exoma/genética , Sequenciamento do Exoma/métodos , Bases de Dados Genéticas , Testes Genéticos/métodos , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Fenótipo
15.
Mol Genet Metab ; 141(1): 108126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38184430
16.
Genet Med ; 26(2): 101027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37955240

RESUMO

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Assuntos
Ataxia Cerebelar , Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Acidente Vascular Cerebral , Adulto , Humanos , Pré-Escolar , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Acetazolamida/uso terapêutico , Seguimentos , Estudos Prospectivos
17.
JIMD Rep ; 64(6): 424-433, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37927489

RESUMO

The phosphatidylinositol glycan anchor biosynthesis class O protein (PIGO) enzyme is an important step in the biosynthesis of glycosylphosphatidylinositol (GPI), which is essential for the membrane anchoring of several proteins. Bi-allelic pathogenic variants in PIGO lead to a congenital disorder of glycosylation (CDG) characterized by global developmental delay, an increase in serum alkaline phosphatase levels, congenital anomalies including anorectal, genitourinary, and limb malformations in most patients; this phenotype has been alternately called "Mabry syndrome" or "hyperphosphatasia with impaired intellectual development syndrome 2." We report a 22-month-old female with PIGO deficiency caused by novel PIGO variants. In addition to the Mabry syndrome phenotype, our patient's clinical picture was complicated by intermittent hypoglycemia with signs of functional hyperinsulinism, severe secretory diarrhea, and osteopenia with a pathological fracture, thus, potentially expanding the known phenotype of this disorder, although more studies are necessary to confirm these associations. We also provide an updated review of the literature, and propose unifying the nomenclature of PIGO deficiency as "PIGO-CDG," which reflects its pathophysiology and position in the broad scope of metabolic disorders and congenital disorders of glycosylation.

18.
Mol Genet Metab ; 140(3): 107695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708666

RESUMO

BACKGROUND: Propionic acidemia (PA) is a rare autosomal recessive organic acidemia that classically presents within the first days of life with a metabolic crisis or via newborn screening and is confirmed with laboratory tests. Limited data exist on the natural history of patients with PA describing presentation, treatments, and clinical outcomes. OBJECTIVE: To retrospectively describe the natural history of patients with PA in a clinical setting from a real-world database using both structured and unstructured electronic health record (EHR) data using novel data extraction techniques in a unique care setting. DESIGN/METHODS: This retrospective study used EHR data to identify patients with PA seen at the Mayo Clinic. Unstructured clinical text (medical notes, pathology reports) were analyzed using augmented curation natural language processing models to enhance analysis of data extracted by structured data fields (International Classification of Diseases 9th or 10th revision [ICD-9/-10] codes, Current Procedural Terminology [CPT] codes, and medication orders). De-identified health records were also manually reviewed by clinical scientists to ensure data accuracy and completeness. The index date was defined as the patient's date of PA diagnosis at the Mayo Clinic. Results were reported as aggregate descriptive statistics relative to patients' index dates. Complications, therapeutic interventions, laboratory tests, procedures, and hospitalization encounters related to PA were described at and within 6 months of the patient's index date, and from medical history available before the index date. RESULTS: In total, 13 patients with PA were identified, with visits occurring from 1998 to 2022. Age at diagnosis ranged from birth to 3 years; age at initial evaluation at the Mayo Clinic ranged from 3 days to 28 years. The mean number of Mayo Clinic outpatient visits was 31 (median duration of care, 2 years). PA-related complications were documented in 85% of patients and included nutritional difficulties (46%), metabolic decompensation events (MDEs; 38%), neurologic abnormalities (38%), and cardiomyopathy (7%). One pair of affected siblings had mild symptoms and no complications or MDEs. All 5 patients with a history of MDEs presented with developmental delays. Among patients with MDEs, the mean frequency of outpatient clinical care visits was 10 per year, and 3 patients required inpatient hospitalization (mean duration, 16 days). The incidence of severe complications was higher among patients with MDEs than those without MDEs. Of the patients with MDEs, 2 experienced crises while receiving treatment at the Mayo Clinic, with 9 total MDEs occurring between the 2 patients. Symptoms at presentation included hyperammonemia (78%), fever and/or decreased nutritional intake (67%), hyperglycemia/hypoglycemia (56%), intercurrent upper respiratory infection and/or lethargy (44%), constipation (33%), altered mental status (33%), and cough (33%). CONCLUSIONS: This study highlights the range and frequency of clinical outcomes experienced by patients with PA and demonstrates the clinical burden of MDEs.


Assuntos
Acidemia Propiônica , Recém-Nascido , Humanos , Pré-Escolar , Acidemia Propiônica/complicações , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/epidemiologia , Estudos Retrospectivos , Registros Eletrônicos de Saúde , Processamento de Linguagem Natural , Triagem Neonatal/métodos
19.
Genes (Basel) ; 14(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37628636

RESUMO

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Defeitos Congênitos da Glicosilação/genética , Autofagia/genética , Mitocôndrias/genética , Metabolismo Energético
20.
Orphanet J Rare Dis ; 18(1): 247, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644541

RESUMO

Congenital disorders of glycosylation are a group of more than 160 rare genetic defects in protein and lipid glycosylation. Since the first clinical report in 1980 of PMM2-CDG, the most common CDG worldwide, research made great strides, but nearly all of them are still missing a cure. CDG diagnosis has been at a rapid pace since the introduction of whole-exome/whole-genome sequencing as a diagnostic tool. Here, we retrace the history of CDG by analyzing all the patents associated with the topic. To this end, we explored the Espacenet database, extracted a list of patents, and then divided them into three major groups: (1) Drugs/therapeutic approaches for CDG, (2) Drug delivery tools for CDG, (3) Diagnostic tools for CDG. Despite the enormous scientific progress experienced in the last 30 years, diagnostic tools, drugs, and biomarkers are still urgently needed.


Assuntos
Defeitos Congênitos da Glicosilação , Narração , Humanos , Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Bases de Dados Factuais , Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...