Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38218127

RESUMO

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Assuntos
Doença de Alzheimer , Doença Hepática Induzida por Substâncias e Drogas , Fármacos Neuroprotetores , Piperidinas , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Receptores de N-Metil-D-Aspartato , Tacrina/química , Inibidores da Colinesterase/química , Sítios de Ligação , Colinesterases , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico
2.
Biochim Biophys Acta ; 1691(1): 51-65, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15053924

RESUMO

Iloprost (IP) stimulation (1 microM, 2 h) of Flag-epitope-tagged human IP prostanoid receptor (FhIPR) expressed in HEK293 cells resulted in specific decrease of endogenous G(s)alpha protein in detergent-insensitive, caveolin-enriched, membrane domains (DIMs). Receptor protein FhIPR, caveolin, G(i)alpha and GPI-linked, domain markers CD55 and CD59 were unchanged. The same result was obtained in HEK293 cells expressing FhIPR-G(s)alpha fusion protein. The endogenous G(s)alpha decreased, but the level of Flag-hIPR-G(s)alpha protein did not change. The specific depletion of domain-bound pool of G(s)alpha as consequence of iloprost stimulation was also demonstrated in membrane domains prepared according to alkaline treatment plus sonication protocol (detergent-free procedure of Song et al.). Our data further indicated that in control, quiescent cells only a very small amount of IP prostanoid receptor was present in DIMs together with large amount of its cognate G(s)alpha protein. Expressed in quantitative terms, DIMs contained 30-40% of the total cellular amount of G proteins whereas the content of IP prostanoid receptors was 1-3%. The dominant portion (>95%) of FhIPR as well as FhIPR-G(s)alpha was localised in high-density area of the gradient containing detergent-solubilised proteins. FhIPR and FhIPR-G(s)alpha distribution was similar to that of transmembrane plasma membrane (PM) markers (CD147, MHCI, CD29, Tapa1, the alpha subunit of Na,K-ATPase, transmembrane form of CD58 and CD44). All these proteins are known to be fully solubilised by detergent and thus unable to float in density gradient. Our data indicate that (i) long-term agonist stimulation of IP prostanoid receptor is associated with preferential decrease of its cognate G protein G(s)alpha from membrane domains; receptor level is unchanged. (ii) Very small fraction (1-3%) of total cellular amount of receptors is recovered in DIMs together with roughly 40% of G proteins. These data suggest a "supra-stoichiometric" arrangement of G proteins and corresponding receptors in DIMs.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/efeitos dos fármacos , Iloprosta/farmacologia , Microdomínios da Membrana/química , Receptores de Prostaglandina/agonistas , Caveolinas , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/análise , Humanos , Proteínas de Membrana/análise , Receptores de Epoprostenol , Receptores de Prostaglandina/análise , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Fatores de Tempo
3.
J Neurochem ; 85(1): 34-49, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12641725

RESUMO

Low-density membrane fragments (domains) were separated from the bulk of plasma membranes of human embryonic kidney (HEK)293 cells expressing a delta-opioid (DOP) receptor-Gi1alpha fusion protein by drastic homogenization and flotation on equilibrium sucrose density gradients. The functional activity of trimeric G proteins and capacity of the DOP receptor to stimulate both the fusion protein-linked Gi1alpha and endogenous pertussis-toxin sensitive G proteins was measured as d-Ala2, d-Leu5-enkephalin stimulated high-affinity GTPase or guanosine-5'-[gamma-35S]triphosphate ([35S]GTPgammaS) binding. The maximum d-Ala2-d-Leu5 enkephalin (DADLE)-stimulated GTPase was two times higher in low-density membrane fragments than in bulk of plasma membranes; 58 and 27 pmol/mg/min, respectively. The same difference was obtained for [35S]GTPgammaS binding. Contrarily, the low-density domains contained no more than half the DOP receptor binding sites (Bmax = 6.6 pmol/mg versus 13.6 pmol/mg). Thus, when corrected for expression levels of the receptor, low-density domains exhibited four times higher agonist-stimulated GTPase and [35S]GTPgammaS binding than the bulk plasma membranes. The regulator of G protein signaling RGS1, enhanced further the G protein functional activity but did not remove the difference between domain-bound and plasma membrane pools of G protein. The potency of the agonist in functional studies and the affinity of specific [3H]DADLE binding to the receptor were, however, the same in both types of membranes - EC50 = 4.5 +/- 0.1 x 10(-8) and 3.2 +/- 1.4 x 10(-8) m for GTPase; Kd = 1.2 +/- 0.1 and 1.3 +/- 0.1 nm for [3H]DADLE radioligand binding assay. Similar results were obtained when sodium bicarbonate was used for alkaline isolation of membrane domains. By contrast, detergent-insensitive membrane domains isolated following treatment of cells with Triton X100 exhibited no DADLE-stimulated GTPase or GTPgammaS binding. Functional coupling between the DOP receptor and cognate G proteins was also blocked by high-energy ultrasound and repeated freezing-thawing. Our data indicate, for the first time, that membrane domains isolated using 'detergent-free' procedures exhibit higher efficiency of coupling between a G protein-coupled receptor and its corresponding G protein(s) than bulk plasma membranes. Detergent-extraction diminishes these interactions, even when the receptor and G proteins are physically tethered together.


Assuntos
Membrana Celular/química , Proteínas Heterotriméricas de Ligação ao GTP/química , Receptores Opioides delta/química , Linhagem Celular , Centrifugação com Gradiente de Concentração , Detergentes/química , Detergentes/farmacologia , Relação Dose-Resposta a Droga , Leucina Encefalina-2-Alanina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Humanos , Rim/química , Rim/citologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores Opioides delta/agonistas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Solubilidade/efeitos dos fármacos , Sonicação , Frações Subcelulares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...