Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792082

RESUMO

This work presents an overview of the reports on the bacterial cell photocatalytic destruction and mineralization process in the presence of TiO2-based photocatalysts. The presented research included experiments conducted in air and water. Numerous works confirmed that a photocatalytic process with TiO2 led to bacteria and their organic residues' mineralization. Additionally, based on the obtained results, a possible two-stage mechanism of photocatalytic mineralization in the presence of TiO2-based materials was proposed. To help future studies, challenges of photocatalytic microorganism mineralization are also proposed. There are some aspects that need to be addressed, such as the lack of standardization of conducted research or relatively small amount of research on photocatalytic microorganism mineralization. According to our best knowledge, in the available literature, no work regarding a summary of previous research on photocatalytic bacterial mineralization process was found.


Assuntos
Bactérias , Processos Fotoquímicos , Titânio , Titânio/química , Catálise , Bactérias/metabolismo
2.
Materials (Basel) ; 16(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687503

RESUMO

This paper presents new photocatalysts obtained by treating carbon spheres (CS) and TiO2 in a microwave reactor at a pressure of 20 atm and a temperature of up to 300 °C for 15 min and then depositing TiO2/CS composites on glass fibre cloths. Such highly CO2-adsorbing photocatalysts showed photoactivity in the simultaneous water-splitting process, generating H2, reducing CO2 to CO and CH4, and reducing N2 to NH3. In addition, calculations of the hydrogen balance involved in all reactions were performed. Adding 1 g of carbon spheres per 1 g of TiO2 maintained the high selectivity of nitrogen fixation at 95.87-99.5%, which was continuously removed from the gas phase into the water as NH4+ ions.

3.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838643

RESUMO

The presented work shows the antibacterial activity of TiO2 photocatalysts modified by 3-aminopropyltriethoxysilane (APTES). The APTES-functionalized TiO2 samples were obtained by the solvothermal process followed by calcination. The antibacterial activity of APTES/TiO2 samples was evaluated with two species of bacteria, Escherichia coli and Staphylococcus epidermidis, under artificial solar light (ASL) irradiation. The used bacteria are model organisms characterized by negative zeta potential (approx. -44.2 mV for E. coli and -42.3 mV for S. epidermidis). For the first time, the antibacterial properties of APTES-functionalized TiO2 were evaluated against mono- and co-cultured bacteria. The high antibacterial properties characterized the obtained APTES-modified nanomaterials. The best antibacterial properties were presented in the TiO2-4 h-120 °C-300 mM-Ar-300 °C sample (modified with 300 mM of APTES and calcined at 300 °C). The improvement of the antibacterial properties was attributed to a positive value of zeta potential, high surface area, and porous volume.


Assuntos
Escherichia coli , Staphylococcus epidermidis , Escherichia coli/efeitos da radiação , Técnicas de Cocultura , Catálise , Titânio/efeitos da radiação , Antibacterianos
4.
Molecules ; 27(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296393

RESUMO

This work aimed to obtain hybrid composites based on photoactive metal oxide and carbon having adsorption properties. The materials, composed of titanium dioxide or zinc oxide and spherical carbon, were obtained from resorcinol-formaldehyde resin, treated in a solvothermal reactor heated with microwaves and then subjected to carbonization, were received. The functional groups of pure carbon spheres (unsaturated stretching C=C, stretching C-OH and C-H bending vibrations), CS/ZnO and CS/TiO2 samples were determined by FT-IR analysis. The characteristic bands for ZnO and TiO2 were observed below 1000 cm-1. The thermal oxidative properties are similar for TiO2- and ZnO-modified carbon spheres. We have observed that the increased carbon sphere content in nanocomposites results in starting the decomposition process at a lower temperature, therefore, nanocomposites have a broader combustion temperature range. The effect of the oxides' addition to carbon spheres on their adsorption properties was evaluated in detail by examining CO2 adsorption from the gas phase. The selectivity of CO2 over N2 at a temperature of 25 °C and pressure of 1 bar (a novelty in testing CS-based sorbents) calculated for 3.00 CS/TiO2 and 4.00 CS/ZnO was 15.09 and 16.95, respectively. These nanocomposites exhibit excellent cyclic stability checked over 10 consecutive adsorption-desorption cycles.

5.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563110

RESUMO

In this work, the characteristics of saccharose (sucrose)-modified TiO2 (C/TiO2) photocatalysts obtained using a hydrothermal method at low temperature (100 °C) are presented. The influence of C/TiO2 on survivability and enzyme activity (catalase and superoxide dismutase) of Gram-negative bacteria Escherichia coli (ATCC 29425) and Gram-positive bacteria Staphylococcus epidermidis (ATCC 49461) under UV-A and artificial solar light (ASL) were examined. The obtained TiO2-1%-S-100 photocatalysts were capable of total E. coli and S. epidermidis inactivation under ASL irradiation in less than 1 h. In addition, the impacts of sugars on the photocatalytic activity and disinfection performance are discussed.


Assuntos
Desinfecção , Escherichia coli , Catálise , Desinfecção/métodos , Escherichia coli/efeitos da radiação , Luz , Staphylococcus epidermidis , Sacarose , Titânio/farmacologia , Titânio/efeitos da radiação , Água
6.
ChemistryOpen ; 11(4): e202100262, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35373521

RESUMO

A new approach to hydrogen production from water is described. This simple method is based on carbon dioxide-mediated water decomposition under UV radiation. The water contained dissolved sodium hydroxide, and the solution was saturated with gaseous carbon dioxide. During saturation, the pH decreased from about 11.5 to 7-8. The formed bicarbonate and carbonate ions acted as scavengers for hydroxyl radicals, preventing the recombination of hydroxyl and hydrogen radicals and prioritizing hydrogen gas formation. In the presented method, not yet reported in the literature, hydrogen production is combined with carbon dioxide. For the best system with alkaline water (0.2 m NaOH) saturated with CO2 under UV-C, the hydrogen production amounted to 0.6 µmol h-1 during 24 h of radiation.


Assuntos
Dióxido de Carbono , Hidrogênio , Bicarbonatos , Dióxido de Carbono/química , Radical Hidroxila , Hidróxido de Sódio/química
7.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329696

RESUMO

Nanocomposites based on nanocrystalline titania modified with graphene-related materials (reduced and oxidized form of graphene) showed the existence of magnetic agglomerates. All parameters of magnetic resonance spectra strongly depended on the materials' modification processes. The reduction of graphene oxide significantly increased the number of magnetic moments, which caused crucial changes in the reorientation and relaxation processes. At room temperature, a wide resonance line dominated for all nanocomposites studied and in some cases, a narrow resonance line derived from the conduction electrons. Some nanocomposites (samples of titania modified with graphene oxide, prepared with the addition of water or butan-1-ol) showed a single domain magnetic (ferromagnetic) arrangement, and others (samples of titania modified with reduced graphene oxide) exhibited magnetic anisotropy. In addition, the spectra of EPR from free radicals were observed for all samples at the temperature of 4 K. The magnetic resonance imaging methods enable the capturing of even a small number of localized magnetic moments, which significantly affects the physicochemical properties of the materials.

8.
Molecules ; 27(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35209176

RESUMO

Zinc chloride and potassium oxalate are often applied as activating agents for carbon materials. In this work, we present the preparation of ZnO/carbon spheres composites using resorcinol-formaldehyde resin as a carbon source in a solvothermal reactor heated with microwaves. Zinc chloride as a zinc oxide source and potassium oxalate as an activating agent were applied. The effect of their addition and preparation conditions on the adsorption properties towards carbon dioxide at 0 °C and 25 °C were investigated. Additionally, for all tested sorbents, the CO2 sorption tests at 40 °C, carried out utilizing a thermobalance, confirmed the trend of sorption capacity measured at 0 and 25 °C. Furthermore, the sample activated using potassium oxalate and modified using zinc chloride (a carbon-to-zinc ratio equal to 10:1) displayed not only a high CO2 adsorption capacity (2.69 mmol CO2/g at 40 °C) but also exhibited a stable performance during the consecutive multicycle adsorption-desorption process.

9.
Molecules ; 27(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35164212

RESUMO

A visible-light photocatalytic performance of 3-aminopropyltriethoxysilane (APTES)-modified TiO2 nanomaterials obtained by solvothermal modification under elevated pressure, followed by calcination in an argon atmosphere at 800-1000 °C, is presented for the first time. The presence of silicon and carbon in the APTES/TiO2 photocatalysts contributed to the effective delay of the anatase-to-rutile phase transformation and the growth of the crystallites size of both polymorphous forms of TiO2 during heating. Thus, the calcined APTES-modified TiO2 exhibited higher pore volume and specific surface area compared with the reference materials. The change of TiO2 surface charge from positive to negative after the heat treatment increased the adsorption of the methylene blue compound. Consequently, due to the blocking of active sites on the TiO2 surface, the adsorption process negatively affected the photocatalytic properties. All calcined photocatalysts obtained after modification via APTES showed a higher dye decomposition degree than the reference samples. For all 3 modifier concentrations tested, the best photoactivity was noted for nanomaterials calcined at 900 °C due to a higher specific surface area than materials calcined at 1000 °C, and a larger number of active sites available on the TiO2 surface compared with samples annealed at 800 °C. It was found that the optimum concentration for TiO2 modification, at which the highest dye decomposition degree was noted, was 500 mM.

10.
Molecules ; 26(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946601

RESUMO

Zeolite 13X (NaX) was modified through ion-exchange with alkali and alkaline earth metal cations. The degree of ion exchange was thoroughly characterized with ICP, EDS and XRF methods. The new method of EDS data evaluation for zeolites was presented. It delivers the same reliable results as more complicated, expensive, time consuming and hazardous ICP approach. The highest adsorption capacities at 273 K and 0.95 bar were achieved for materials containing the alkali metals in the following order K < Na < Li, respectively, 4.54, 5.55 and 5.94 mmol/g. It was found that it is associated with the porous parameters of the ion-exchanged samples. The Li0.61Na0.39X form of zeolite exhibited the highest specific surface area of 624 m2/g and micropore volume of 0.35 cm3/g compared to sodium form 569 m2/g and 0.30 cm3/g, respectively. The increase of CO2 uptake is not related with deterioration of CO2 selectivity. At room temperature, the CO2 vs. N2 selectivity remains at a very high stable level prior and after ion exchange in co-adsorption process (XCO2 during adsorption 0.15; XCO2 during desorption 0.95) within measurement uncertainty. Additionally, the Li0.61Na0.39X sample was proven to be stable in the aging adsorption-desorption tests (200 sorption-desorption cycles; circa 11 days of continuous process) exhibiting the CO2 uptake decrease of about 6%. The exchange with alkaline earth metals (Mg, Ca) led to a significant decrease of SSA and micropore volume which correlated with lower CO2 adsorption capacities. Interestingly, the divalent cations cause formation of mesopores, due to the relaxation of lattice strains.

11.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771999

RESUMO

This paper examines the synthesis of the ZnO/carbon spheres composites using resorcinol-formaldehyde resin as a carbon source and zinc nitrate as a zinc oxide source in a solvothermal reactor heated with microwaves. The influence of activation with potassium oxalate and modification with zinc nitrate on the physicochemical properties of the obtained materials and CO2 adsorption capacity was investigated. It was found that in the case of nonactivated material as well as activated materials, the presence of zinc oxide in the carbon matrix had no effect or slightly increased the values of CO2 adsorption capacity. Only for the material where the weight ratio of carbon:zinc was 2:1, the decrease of CO2 adsorption capacity was reported. Additionally, CO2 adsorption experiments on nonactivated carbon spheres and those activated with potassium oxalate with different amounts of zinc nitrate were carried out at 40 °C using thermobalance. The highest CO2 adsorption capacity at temperature 40 °C (2.08 mmol/g adsorbent) was achieved for the material after activation with potassium oxalate with the highest zinc nitrate content as ZnO precursor. Moreover, repeated adsorption/desorption cycle experiments revealed that the as-prepared carbon spheres were very good CO2 adsorbents, exhibiting excellent cyclic stability with a performance decay of less than 10% over up to 25 adsorption-desorption cycles.

12.
Biochem Biophys Res Commun ; 534: 1064-1068, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092791

RESUMO

In this work, the impact of APTES-modified TiO2 photocatalysts on antioxidant enzymes (catalase and superoxide dismutase) activity secreted by bacteria was presented. Microbial tests has been examined using Escherichia coli (ATCC 29425) and Staphylococcus epidermidis (ATCC 49461) as model organisms. It was found that APTES-TiO2 affected the activity of antioxidant enzymes. Additionally, obtained APTES-TiO2 photocatalysts were capable of total E. coli and S. epidermidis inactivation under artificial solar light irradiation. The sample modified with the concentration of APTES equals 300 mM (TiO2-4h-120°C-300mM) showed the strongest photocatalytic activity toward both bacteria species. The two-stage photocatalytic mechanism of bacteria response to photocatalysts was proposed.


Assuntos
Catalase/metabolismo , Escherichia coli/enzimologia , Propilaminas/química , Silanos/química , Staphylococcus epidermidis/enzimologia , Superóxido Dismutase/metabolismo , Titânio/química , Catálise/efeitos da radiação , Desinfecção , Ativação Enzimática/efeitos da radiação , Escherichia coli/citologia , Escherichia coli/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/efeitos da radiação
13.
Materials (Basel) ; 13(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532009

RESUMO

This paper describes the investigations on the possibilities of treatment of wastewater generated in an industrial laundry with application of a combined biological-photooxidation- membrane system aimed at water recycle and reuse. The two treatment schemes were compared: 1) scheme A consisting of a treatment in a moving bed biological reactor (MBBR) followed by microfiltration (MF) and nanofiltration (NF), and 2) scheme B comprising MBBR followed by oxidation by photolysis enhanced with in situ generated O3 (UV/O3) after which MF and NF were applied. The removal efficiency in MBBR reached 95-97% for the biochemical oxygen demand; 90-93% for the chemical oxygen demand and 89-99% for an anionic and a nonionic surfactants. The application of UV/O3 system allowed to decrease the content of the total organic carbon by 68% after 36 h of operation with a mineralization rate of 0.36 mg/L·h. Due to UV/O3 pretreatment, a significant mitigation of membrane fouling in the case of both MF and NF processes was achieved. The MF permeate flux in the system B was over two times higher compared to that in the system A. Based on the obtained results it was concluded that the laundry wastewater pretreated in the MBBR-UV/O3-MF-NF system could be recycled to any stage of the laundry process.

14.
J Environ Manage ; 262: 110343, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250819

RESUMO

Series of AgNPs/TiO2-loaded carbon fiber cloth (CFC) composites were prepared by incorporation of pristine TiO2 and three AgNPs-modified TiO2 additives onto the surface of four commercial CFCs. AgNPs/TiO2 photocatalysts were synthesized by the wet impregnation method, including NaBH4 reduction of silver ions. The silver content in the modified photocatalyst was assessed by inductively coupled plasma optical emission spectrometry (ICP-OES) as well as XRD analysis. It can be indicated that silver was successfully reduced to Ag nanoparticles what was confirmed by UV-Vis/DRS as well as XRD methods. The photocatalytic activity of the AgNPs/TiO2-loaded CFCs was evaluated during the photocatalytic oxidation (PCO) tests of nitric oxide (NO) acting as a model air contaminant under UV light. It was found that the highest NO removal rate was observed for the AgNPs/TiO2-loaded CFC material containing 3.70 wt% of AgNPs. Modification of TiO2 with AgNPs stabilized the photocatalytic efficiency of the composites during 5 as well as 24 consecutive NO photooxidation cycles. It was also concluded that the presence of AgNPs was a key factor responsible for hindering NO2 formation.


Assuntos
Nanopartículas Metálicas , Prata , Fibra de Carbono , Catálise , Óxido Nítrico , Titânio
15.
ACS Omega ; 5(4): 1966-1973, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039333

RESUMO

Photocatalysis can offer solutions for the transformation of greenhouse gases, such as methane and carbon dioxide. In the paper, a candidate for such a photocatalyst is presented, based on a composite of titania with carbon spheres. The material was obtained using microwave assisted solvothermal synthesis, enabling good dispersion of titania. The studies of carbon dioxide and methane adsorption were performed under ambient pressure and temperatures of 40, 60, and 80 °C. The effect of temperature increase was less favorable for carbon dioxide than for methane. Satisfying values of carbon dioxide and methane uptake were obtained-3.94 mmol CO2/g and 2.77 mmol CH4/g at 40 °C.

16.
Materials (Basel) ; 12(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739551

RESUMO

In this paper, studies of the mechanical properties and photocatalytic activity of new photoactive cement mortars are presented. The new building materials were obtained by the addition of 1, 3, and 5 wt % (based on the cement content) of nitrogen-modified titanium dioxide (TiO2/N) to the cement matrix. Photocatalytic active cement mortars were characterized by measuring the flexural and the compressive strength, the hydration heat, the zeta potential of the fresh state, and the initial and final setting time. Their photocatalytic activity was tested during NOx decomposition. The studies showed that TiO2/N gives the photoactivity of cement mortars during air purification with an additional positive effect on the mechanical properties of the hardened mortars. The addition of TiO2/N into the cement shortened the initial and final setting time, which was distinctly observed using 5 wt % of the photocatalyst in the cement matrix.

17.
Molecules ; 24(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438511

RESUMO

The antibacterial activity of concrete plates loaded with various titania photocatalysts was investigated. The target in bacteria testing was Escherichia coli K12. The presence of photocatalysts in the concrete matrix at a dose of 10 wt.% improved the antibacterial properties, which became significant depending on the type of the added photocatalyst. Total inactivation of E. coli irradiated under artificial solar light was observed on the concrete plates loaded with the following photocatalysts: TiO2/N,CMeOH-300, TiO2/N,CEtOH-100, TiO2/N,CisoPrOH-100 and TiO2/N-300. The modified Hom disinfection kinetic model was found as a best-fit model for the obtained results. The presence of nitrogen and carbon in the photocatalysts structure, as well as crystallite size, surface area and porosity, contributed to the increase of antibacterial properties of concrete plates.


Assuntos
Luz , Fotoquímica/métodos , Titânio/química , Catálise , Escherichia coli/efeitos da radiação , Cinética , Titânio/efeitos da radiação
18.
J Phys Condens Matter ; 31(40): 404001, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226702

RESUMO

DFT/D + U and density functional based tight binding (DFTB) molecular modeling was used to investigate the role of the structural, electronic and optical properties of reduced graphene oxide surface (r-GO), hybridized with hydrated TiO2 moieties of various size, ranging from small molecular Ti2O4 clusters into extended Ti43O86 rutile type nanocrystals of ~5 nm diameter. The calculated adhesion energies, varying from -5.048 eV (r-GO|Ti2O4), -12.159 eV (r-GO|Ti5O10), -18.499 eV (r-GO|Ti15O30) to -42.484 eV (r-GO|Ti43O86), indicate high stability of these composites. It was shown that electronic interactions at the r-GO|(1 1 0)TiO2 interface give rise to net charge flow from the r-GO substrate towards the TiO2 moieties, analyzed in terms of the partial charge density 3D plots and an interfacial dipole moment formation. The DOS structure of the composites was calculated by means of the time dependent DFTB approach, and the position and composition of the VB and CB edges, along with the presence of weak mid-gap 2p  C states originating from the intact graphene-like patches in the r-GO substrate were discussed in detail in the context of conceivable photocatalytic activity of the composites. The constructed band alignment diagram implies formation of the staggered type II scheme, with the electric field offset that is sensitive to the titania cluster size. In the case of the nano-reticular TiO2, where only a fraction of the Ti atoms is engaged in the Ti-O-C linkers formation, recombination of the photogenerated charges is inhibited owing to favorable spatial separation effect. For small molecular TiO2 clusters with all Ti cations anchored to the r-GO layer fast cross-relaxation quenches the beneficial interfacial charge separation effect, since the strong hybridization of the oxygen and carbon states provides a convenient pathway for the efficient electronic coupling between the CB edge states of r-GO and the VB edge states of the TiO2 moieties. A phenomenological model of the molecular r-GO|Ti2O4 and the reticular r-GO|Ti43O86 composites was constructed in account for different photocatalytic behavior of both junctions.

19.
Molecules ; 24(5)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832216

RESUMO

Semiconducting polymers are promising materials for photocatalysis, batteries, fuel applications, etc. One of the most useful photocatalysts is polymeric carbon nitride (PCN), which is usually produced during melamine condensation. In this work, a novel method of obtaining a PCN nanocomposite, in which PCN forms an amorphous layer coating on oxide nanoparticles, is presented. Microwave hydrothermal synthesis (MHS) was used to synthesize a homogeneous mixture of nanoparticles consisting of 80 wt.% AlOOH and 20 wt.% of ZrO2. The nanopowders were mechanically milled with melamine, and the mixture was annealed in the temperature range of 400⁻600 °C with rapid heating and cooling. The above procedure lowers PCN formation to 400 °C. The following nanocomposite properties were investigated: band gap, specific surface area, particle size, morphology, phase composition, chemical composition, and photocatalytic activity. The specific surface of the PCN nanocomposite was as high as 70 m²/g, and the optical band gap was 3 eV. High photocatalytic activity in phenol degradation was observed. The proposed simple method, as well as the low-cost preparation procedure, permits the exploitation of PCN as a polymer semiconductor photocatalytic material.


Assuntos
Catálise , Nanopartículas Metálicas/química , Nanocompostos/química , Nitrilas/química , Luz , Nanocompostos/efeitos da radiação , Óxidos/química , Processos Fotoquímicos , Polímeros/química , Difração de Raios X
20.
Materials (Basel) ; 12(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678342

RESUMO

In the study the self-cleaning properties of photoactive gypsum plasters are presented. The modified gypsum plasters were obtained by addition of 1 and 3 wt.% of nitrogen-modified titanium dioxide (TiO2/N) and 0.1, 0.3, and 0.5 wt.% of glass fiber. The self-cleaning ability of the obtained materials was tested during two dyes decomposition: Methylene Blue (MB) and Reactive Orange (RO). It was found that presence of glass fiber increased photocatalytic activity of modified gypsum plasters, which may be due to the fact glass fiber may act as ducts for light and transport it to sites screened by TiO2 or glass fiber can retard charge recombination. Moreover, unexpectedly the addition of glass fiber did not increase the mechanical properties of modified gypsum plasters, which may be because gypsum does not strongly adhere to the surface of glass fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...