Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 69(27): 7798-7814, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34181402

RESUMO

The female flowers ("cones") of the hop plant (Humulus L.) produce compounds that contribute to the flavor and other properties of beer. Hop leaves and cones produce many of the same compounds, which also confer agronomic traits such as insect and disease resistance. Targeted and untargeted ultraperformance liquid chromatography-quadrupole time-of-flight-mass spectrometry with Waters MSE technology (UPLC-QTof-MSE) metabolomics were used to compare leaf phytochemical compositions of greenhouse-grown southwestern American wild Humulus neomexicanus (A. Nelson and Cockerell) Rydb. against a group of commercial hop cultivars consisting of both pure European Humulus lupulus L. and European-North American hybrids. Principal component analysis showed a clear distinction in chemical profiles between the two groups. H. neomexicanus leaves had a significantly higher content of total α acids (p = 4.4 × 10-9), total bitter acids (p = 2.6 × 10-6), cohumulone (p = 1.0 × 10-13), humulone + adhumulone (p = 9.1 × 10-4), and the prenylflavonoids xanthohumol (p = 0.013) and desmethylxanthohumol (p = 0.029) as well as significantly higher densities of glandular trichomes (p = 1.3 × 10-6), the biosynthetic site of those compounds. Most flavonol glycosides measured were also significantly more abundant in H. neomexicanus (p = 1.5 × 10-22 to 0.0027), whereas phenolic acids were consistently, but generally nonsignificantly (p > 0.05), more abundant in the cultivars. The higher bitter acid, prenylflavonoid, and flavonol glycoside content of H. neomexicanus leaves may help to confer more favorable insect and disease-resistance properties.


Assuntos
Humulus , Cromatografia Líquida , Espectrometria de Massas , Folhas de Planta , Tricomas , Estados Unidos
2.
J Agric Food Chem ; 68(49): 14698-14708, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33236890

RESUMO

The hop (Humulus lupulus L.) is an important specialty crop used in beer production. Untargeted UPLC-QTof-MSE metabolomics was used to determine metabolite changes in the leaves of hop plants under varying degrees of drought stress. Principal component analysis revealed that drought treatments produced qualitatively distinct changes in the overall chemical composition of three out of four genotypes tested (i.e., Cascade, Sultana, and a wild var. neomexicanus accession but not Aurora), although differences among treatments were smaller than differences among genotypes. A total of 14 compounds consistently increased or decreased in response to drought stress, and this effect was generally progressive as the severity of drought increased. A total of 10 of these marker compounds were tentatively identified as follows: five glycerolipids, glutaric acid, pheophorbide A, abscisic acid, roseoside, and dihydromyricetin. Some of the observed metabolite changes likely occur across all plants under drought conditions, while others may be specific to hops or to the type of drought treatments performed.


Assuntos
Humulus/metabolismo , Folhas de Planta/química , Metabolismo Secundário , Ácido Abscísico/análise , Ácido Abscísico/metabolismo , Cromatografia Líquida de Alta Pressão , Secas , Genótipo , Glucosídeos/análise , Glucosídeos/metabolismo , Glutaratos/análise , Glutaratos/metabolismo , Humulus/química , Humulus/genética , Espectrometria de Massas , Metabolômica , Norisoprenoides/análise , Norisoprenoides/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Água/análise , Água/metabolismo
3.
PLoS One ; 15(6): e0233971, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502183

RESUMO

Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich history of cultivation, beginning in Europe and now spanning the globe. There are five wild varieties worldwide, which may have been introgressed with cultivated varieties. As a dioecious species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variability have confounded directed breeding efforts. Consequently, understanding the hop genome represents a considerable challenge, requiring additional resources. In order to facilitate investigations into the transmission genetics of hop, we report here a tandem repeat discovery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem repeat sequence families, which represent candidates for FISH probe development. For two of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes from conserved regions of and demonstrated their utility by staining meiotic chromosomes from wild hop, var. neomexicanus to address, for example, questions about hop transmission genetics. Collectively, these tandem repeat sequence families represent new resources suitable for development of additional cytogenomic tools for hop research.


Assuntos
Genoma de Planta , Genômica/métodos , Humulus/genética , Sequências de Repetição em Tandem/genética , Genótipo , Hibridização in Situ Fluorescente/métodos , Filogenia , Melhoramento Vegetal , Estudo de Prova de Conceito
4.
Food Chem ; 321: 126644, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247886

RESUMO

Genetics and environment both influence the content of hop (Humulus lupulus L.) aroma compounds. The effects of these two factors on aroma glycosides, which can change the aroma profile of beer over time, were examined in a preliminary study. Twenty-three hop cultivars were grown in the northwestern United States in two locations with distinct terroirs. UPLC-MS/MS analysis of hop cone extracts revealed that growing location had a large effect on hexyl glucoside levels but only a negligible effect on levels of linalyl, raspberry ketone, and 2-phenylethyl glucoside, which were mostly affected by genetic differences. The large terroir effect on hexyl glucoside, which releases a green leaf volatile with a grassy aroma when hydrolyzed, but not on the other aroma glucosides, which have more desirable aromas when hydrolyzed, could have an impact on beer aroma profiles.


Assuntos
Glucosídeos/análise , Glicosídeos/química , Humulus/química , Odorantes/análise , Cromatografia Líquida de Alta Pressão , Cor , Glucosídeos/química , Glicosilação , Estrutura Molecular , Folhas de Planta/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...