Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiology ; 290(2): 305-314, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30457482

RESUMO

Purpose To compare breast cancer detection performance of radiologists reading mammographic examinations unaided versus supported by an artificial intelligence (AI) system. Materials and Methods An enriched retrospective, fully crossed, multireader, multicase, HIPAA-compliant study was performed. Screening digital mammographic examinations from 240 women (median age, 62 years; range, 39-89 years) performed between 2013 and 2017 were included. The 240 examinations (100 showing cancers, 40 leading to false-positive recalls, 100 normal) were interpreted by 14 Mammography Quality Standards Act-qualified radiologists, once with and once without AI support. The readers provided a Breast Imaging Reporting and Data System score and probability of malignancy. AI support provided radiologists with interactive decision support (clicking on a breast region yields a local cancer likelihood score), traditional lesion markers for computer-detected abnormalities, and an examination-based cancer likelihood score. The area under the receiver operating characteristic curve (AUC), specificity and sensitivity, and reading time were compared between conditions by using mixed-models analysis dof variance and generalized linear models for multiple repeated measurements. Results On average, the AUC was higher with AI support than with unaided reading (0.89 vs 0.87, respectively; P = .002). Sensitivity increased with AI support (86% [86 of 100] vs 83% [83 of 100]; P = .046), whereas specificity trended toward improvement (79% [111 of 140]) vs 77% [108 of 140]; P = .06). Reading time per case was similar (unaided, 146 seconds; supported by AI, 149 seconds; P = .15). The AUC with the AI system alone was similar to the average AUC of the radiologists (0.89 vs 0.87). Conclusion Radiologists improved their cancer detection at mammography when using an artificial intelligence system for support, without requiring additional reading time. Published under a CC BY 4.0 license. See also the editorial by Bahl in this issue.


Assuntos
Inteligência Artificial , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia/métodos , Intensificação de Imagem Radiográfica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pessoa de Meia-Idade , Curva ROC
2.
IEEE Trans Med Imaging ; 37(8): 1857-1864, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994062

RESUMO

In this paper, we analyze how stabilizing the variance of intensity-dependent quantum noise in digital mammograms can significantly improve the computerized detection of microcalcifications (MCs). These lesions appear on mammograms as tiny deposits of calcium smaller than 20 pixels in diameter. At this scale, high frequency image noise is dominated by quantum noise, which in raw mammograms can be described with a square-root noise model. Under this assumption, we derive an adaptive variance stabilizing transform (VST) that stabilizes the noise to unitary standard deviation in all the images. This is achieved by estimating the noise characteristics from the image at hand. We tested the adaptive VST as a preprocessing stage for four existing computerized MC detection methods on three data sets acquired with mammographic units from different manufacturers. In all the test cases considered, MC detection performance on transformed mammograms was statistically significantly higher than on unprocessed mammograms. Results were also superior in comparison with a "fixed" (nonparametric) VST previously proposed for digital mammograms.


Assuntos
Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Análise por Conglomerados , Feminino , Humanos
3.
Eur Radiol ; 28(9): 3902-3911, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29572637

RESUMO

OBJECTIVES: To assess observer variability of different reference tissues used for relative CBV (rCBV) measurements in DSC-MRI of glioma patients. METHODS: In this retrospective study, three observers measured rCBV in DSC-MR images of 44 glioma patients on two occasions. rCBV is calculated by the CBV in the tumour hotspot/the CBV of a reference tissue at the contralateral side for normalization. One observer annotated the tumour hotspot that was kept constant for all measurements. All observers annotated eight reference tissues of normal white and grey matter. Observer variability was evaluated using the intraclass correlation coefficient (ICC), coefficient of variation (CV) and Bland-Altman analyses. RESULTS: For intra-observer, the ICC ranged from 0.50-0.97 (fair-excellent) for all reference tissues. The CV ranged from 5.1-22.1 % for all reference tissues and observers. For inter-observer, the ICC for all pairwise observer combinations ranged from 0.44-0.92 (poor-excellent). The CV ranged from 8.1-31.1 %. Centrum semiovale was the only reference tissue that showed excellent intra- and inter-observer agreement (ICC>0.85) and lowest CVs (<12.5 %). Bland-Altman analyses showed that mean differences for centrum semiovale were close to zero. CONCLUSION: Selecting contralateral centrum semiovale as reference tissue for rCBV provides the lowest observer variability. KEY POINTS: • Reference tissue selection for rCBV measurements adds variability to rCBV measurements. • rCBV measurements vary depending on the choice of reference tissue. • Observer variability of reference tissue selection varies between poor and excellent. • Centrum semiovale as reference tissue for rCBV provides the lowest observer variability.


Assuntos
Determinação do Volume Sanguíneo/métodos , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/irrigação sanguínea , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Neoplasias Encefálicas/patologia , Meios de Contraste , Feminino , Glioma/patologia , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valores de Referência , Estudos Retrospectivos , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Adulto Jovem
4.
Med Phys ; 44(4): 1390-1401, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28182277

RESUMO

PURPOSE: Computer-aided detection (CADe) systems for mammography screening still mark many false positives. This can cause radiologists to lose confidence in CADe, especially when many false positives are obviously not suspicious to them. In this study, we focus on obvious false positives generated by microcalcification detection algorithms. METHODS: We aim at reducing the number of obvious false-positive findings by adding an additional step in the detection method. In this step, a multiclass machine learning method is implemented in which dedicated classifiers learn to recognize the patterns of obvious false-positive subtypes that occur most frequently. The method is compared to a conventional two-class approach, where all false-positive subtypes are grouped together in one class, and to the baseline CADe system without the new false-positive removal step. The methods are evaluated on an independent dataset containing 1,542 screening examinations of which 80 examinations contain malignant microcalcifications. RESULTS: Analysis showed that the multiclass approach yielded a significantly higher sensitivity compared to the other two methods (P < 0.0002). At one obvious false positive per 100 images, the baseline CADe system detected 61% of the malignant examinations, while the systems with the two-class and multiclass false-positive reduction step detected 73% and 83%, respectively. CONCLUSIONS: Our study showed that by adding the proposed method to a CADe system, the number of obvious false positives can decrease significantly (P < 0.0002).


Assuntos
Neoplasias da Mama/diagnóstico , Diagnóstico por Computador/métodos , Mamografia , Programas de Rastreamento , Algoritmos , Neoplasias da Mama/complicações , Calcinose/complicações , Calcinose/diagnóstico , Reações Falso-Positivas , Humanos
5.
Med Phys ; 43(4): 1676, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27036566

RESUMO

PURPOSE: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists' detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. METHODS: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. RESULTS: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8-1.0 were significantly different between the system without BACs removal and the system with BACs removal, 0.129 ± 0.009 versus 0.144 ± 0.008 (p<0.05), respectively. Additionally, the sensitivity at one false positive per 50 cases and one false positive per 25 cases increased as well, 37% versus 51% (p<0.05) and 58% versus 67% (p<0.05) sensitivity, respectively. Additionally, the CADe system with BACs removal reduces the number of false positives per case by 29% on average. The same sensitivity at one false positive per 50 cases in the CADe system without BACs removal can be achieved at one false positive per 80 cases in the CADe system with BACs removal. CONCLUSIONS: By using dedicated algorithms to detect and remove breast arterial calcifications, the performance of CADe systems can be improved, in particular, at false positive rates representative for operating points used in screening.


Assuntos
Artérias/diagnóstico por imagem , Artérias/metabolismo , Mama/irrigação sanguínea , Calcinose/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reações Falso-Positivas , Humanos , Mamografia , Curva ROC
6.
Med Phys ; 42(4): 1498-504, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25832040

RESUMO

PURPOSE: Automated 3D breast ultrasound (ABUS) has gained interest in breast imaging. Especially for screening women with dense breasts, ABUS appears to be beneficial. However, since the amount of data generated is large, the risk of oversight errors is substantial. Computer aided detection (CADe) may be used as a second reader to prevent oversight errors. When CADe is used in this fashion, it is essential that small cancers are detected, while the number of false positive findings should remain acceptable. In this work, the authors improve their previously developed CADe system in the initial candidate detection stage. METHODS: The authors use a large number of 2D Haar-like features to differentiate lesion structures from false positives. Using a cascade of GentleBoost classifiers that combines these features, a likelihood score, highly specific for small cancers, can be efficiently computed. The likelihood scores are added to the previously developed voxel features to improve detection. RESULTS: The method was tested in a dataset of 414 ABUS volumes with 211 cancers. Cancers had a mean size of 14.72 mm. Free-response receiver operating characteristic analysis was performed to evaluate the performance of the algorithm with and without using the aforementioned Haar-like feature likelihood scores. After the initial detection stage, the number of missed cancer was reduced by 18.8% after adding Haar-like feature likelihood scores. CONCLUSIONS: The proposed technique significantly improves our previously developed CADe system in the initial candidate detection stage.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Ultrassonografia Mamária/métodos , Algoritmos , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Funções Verossimilhança , Reconhecimento Automatizado de Padrão/métodos , Curva ROC , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...