Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(17): 9665-9685, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469537

RESUMO

Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5-30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8-20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.


Assuntos
Processamento Alternativo , Códon sem Sentido , Sequências Reguladoras de Ácido Ribonucleico , Códon de Terminação , Doença/genética , Éxons , Células HEK293 , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Motivos de Nucleotídeos , Nucleotídeos/química
3.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34427640

RESUMO

Owing to a lag between a deleterious mutation's appearance and its selective removal, gold-standard methods for mutation rate estimation assume no meaningful loss of mutations between parents and offspring. Indeed, from analysis of closely related lineages, in SARS-CoV-2, the Ka/Ks ratio was previously estimated as 1.008, suggesting no within-host selection. By contrast, we find a higher number of observed SNPs at 4-fold degenerate sites than elsewhere and, allowing for the virus's complex mutational and compositional biases, estimate that the mutation rate is at least 49-67% higher than would be estimated based on the rate of appearance of variants in sampled genomes. Given the high Ka/Ks one might assume that the majority of such intrahost selection is the purging of nonsense mutations. However, we estimate that selection against nonsense mutations accounts for only ∼10% of all the "missing" mutations. Instead, classical protein-level selective filters (against chemically disparate amino acids and those predicted to disrupt protein functionality) account for many missing mutations. It is less obvious why for an intracellular parasite, amino acid cost parameters, notably amino acid decay rate, is also significant. Perhaps most surprisingly, we also find evidence for real-time selection against synonymous mutations that move codon usage away from that of humans. We conclude that there is common intrahost selection on SARS-CoV-2 that acts on nonsense, missense, and possibly synonymous mutations. This has implications for methods of mutation rate estimation, for determining times to common ancestry and the potential for intrahost evolution including vaccine escape.


Assuntos
COVID-19/virologia , Mutação , SARS-CoV-2/genética , Uso do Códon , Códon sem Sentido , Evolução Molecular , Humanos , Modelos Genéticos , Taxa de Mutação , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Seleção Genética , Mutação Silenciosa
4.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33988683

RESUMO

The nucleotide composition, dinucleotide composition, and codon usage of many viruses differ from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analyzed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host-instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.


Assuntos
Uso do Códon , Vírus , Códon/genética , Evolução Molecular , Genoma Viral , Evasão da Resposta Imune , RNA Mensageiro/genética , Vírus/genética
5.
Mol Biol Evol ; 38(1): 67-83, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32687176

RESUMO

Large-scale re-engineering of synonymous sites is a promising strategy to generate vaccines either through synthesis of attenuated viruses or via codon-optimized genes in DNA vaccines. Attenuation typically relies on deoptimization of codon pairs and maximization of CpG dinucleotide frequencies. So as to formulate evolutionarily informed attenuation strategies that aim to force nucleotide usage against the direction favored by selection, here, we examine available whole-genome sequences of SARS-CoV-2 to infer patterns of mutation and selection on synonymous sites. Analysis of mutational profiles indicates a strong mutation bias toward U. In turn, analysis of observed synonymous site composition implicates selection against U. Accounting for dinucleotide effects reinforces this conclusion, observed UU content being a quarter of that expected under neutrality. Possible mechanisms of selection against U mutations include selection for higher expression, for high mRNA stability or lower immunogenicity of viral genes. Consistent with gene-specific selection against CpG dinucleotides, we observe systematic differences of CpG content between SARS-CoV-2 genes. We propose an evolutionarily informed approach to attenuation that, unusually, seeks to increase usage of the already most common synonymous codons. Comparable analysis of H1N1 and Ebola finds that GC3 deviated from neutral equilibrium is not a universal feature, cautioning against generalization of results.


Assuntos
Vacinas contra COVID-19/genética , COVID-19/genética , Genoma Viral , Mutação , SARS-CoV-2/genética , Seleção Genética , COVID-19/prevenção & controle , Humanos , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Viral/genética , Uracila
6.
PLoS Biol ; 18(12): e3001030, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320856

RESUMO

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/economia , Humanos , Reação em Cadeia da Polimerase Multiplex/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , SARS-CoV-2/genética
7.
Cell Syst ; 10(4): 351-362.e8, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32275854

RESUMO

In the human genome, most genes undergo splicing, and patterns of codon usage are splicing dependent: guanine and cytosine (GC) content is the highest within single-exon genes and within first exons of multi-exon genes. However, the effects of codon usage on gene expression are typically characterized in unspliced model genes. Here, we measured the effects of splicing on expression in a panel of synonymous reporter genes that varied in nucleotide composition. We found that high GC content increased protein yield, mRNA yield, cytoplasmic mRNA localization, and translation of unspliced reporters. Splicing did not affect the expression of GC-rich variants. However, splicing promoted the expression of AT-rich variants by increasing their steady-state protein and mRNA levels, in part through promoting cytoplasmic localization of mRNA. We propose that splicing promotes the nuclear export of AU-rich mRNAs and that codon- and splicing-dependent effects on expression are under evolutionary pressure in the human genome.


Assuntos
Uso do Códon/genética , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular/genética , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Composição de Bases/genética , Códon/genética , Éxons/genética , Expressão Gênica/genética , Genoma Humano/genética , Células HEK293 , Células HeLa , Humanos , Splicing de RNA/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...