Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(24): e2312484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501916

RESUMO

Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.


Assuntos
Materiais Biocompatíveis , Colágeno , Nanofibras , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanofibras/química , Animais , Colágeno/química , Ratos , Humanos , Quitosana/química , Compostos de Estanho/química , Prata/química , Células MCF-7 , Linhagem Celular , Aprendizagem , Sobrevivência Celular/efeitos dos fármacos , Redes Neurais de Computação
2.
Small ; 19(46): e2303862, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452406

RESUMO

In recent years, many metal oxides have been rigorously studied to be employed as solid electrolytes for resistive switching (RS) devices. Among these solid electrolytes, lanthanum oxide (La2 O3 ) is comparatively less explored for RS applications. Given this, the present work focuses on the electrodeposition of La2 O3 switching layers and the investigation of their RS properties for memory and neuromorphic computing applications. Initially, the electrodeposited La2 O3 switching layers are thoroughly characterized by various analytical techniques. The electrochemical impedance spectroscopy (EIS) and Mott-Schottky techniques are probed to understand the in situ electrodeposition, RS mechanism, and n-type semiconducting nature of the fabricated La2 O3 switching layers. All the fabricated devices exhibit bipolar RS characteristics with excellent endurance and stable retention. Moreover, the device mimics the various bio-synaptic properties such as potentiation-depression, excitatory post-synaptic currents, and paired-pulse facilitation. It is demonstrated that the fabricated devices are non-ideal memristors based on double-valued charge-flux characteristics. The switching variation of the device is studied using the Weibull distribution technique and modeled and predicted by the time series analysis technique. Based on electrical and EIS results, a possible filamentary-based RS mechanism is suggested. The present results assert that La2 O3 is a promising solid electrolyte for memory and brain-inspired applications.

3.
ACS Omega ; 5(1): 219-227, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956768

RESUMO

Herein, a protocol strategy has been designed for the preparation of ternary silver nanoparticles-supported polyaniline multiwalled carbon nanotube (Ag NPs-PANI/MWCNT) nanocomposites with a chemical interaction for catalytic and antibacterial activity. The morphological study confirmed that Ag NPs were immobilized on the surface of PANI, and afterward, Ag NPs-PANI were mixed with the MWCNTs. The X-ray diffraction technique revealed the face-centered cubic structure of Ag NPs, and the X-ray photoelectron spectroscopy study revealed the chemical constituent and signature of π-π* and C-N interactions in the nanocomposites. The ternary Ag NPs-PANI/MWCNTs nanocomposites have the apparent rate of reaction (K app) as 5.4 × 10-3 s-1, higher than binary nanocomposites for catalytic reduction of 4-nitrophenol to 4-aminophenol at room temperature. Antibacterial activity of Ag NPs-PANI/MWCNT nanocomposites is higher against pathogenic bacteria. Thereafter, because of multifold applications of ternary nanocomposites, they have a broad scope in the field of environmental and healthcare sectors.

4.
ACS Omega ; 3(3): 2743-2756, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458551

RESUMO

In this study, the in situ sol-gel method has been deployed to prepare the titanium dioxide/multiwalled carbon nanotubes (TiO2/MWCNTs) nanocomposite (NCs) powders with varying content of MWCNTs (0.01-1.0 wt %), to construct the dye-sensitized solar cells (DSSCs). First, binder-free NCs were deposited on a transparent-conducting F:SnO2 (FTO) glass substrate by a doctor-blade technique and then anchored with Ru(II)-based dyes to either N719 or ruthenium phthalocyanine (RuPc). The structural and optical properties and interconnectivity of the materials within the composite are investigated thoroughly by various spectral techniques (XRD, XPS, Raman, FT-IR, and UV-vis), electron microscopy (HRTEM), and BET analysis. The experimental results suggest that the ratio of MWCNTs and TiO2 in NCs, morphology, and their interconnectivity influenced their structural, optical, and photovoltaic properties significantly. Finally, the photovoltaic performances of the assembled DSSCs with different content of MWCNTs to TiO2 films anchored with two different dyes were tested under one sun irradiation (100 mW/cm2). The measured current-voltage (IV) curve and incident photon-to-current conversion efficiency (IPCE) spectra of TiO2/0.1 wt % MWCNTs (T@0.1 C) for N719 dye show three times more power conversion efficiency (η = 6.21%) which is opposed to an efficiency (η = 2.07%) of T@0.1 C for RuPc dye under the same operating conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...