RESUMO
Flower morphology is considered an important factor in species diversification because it may influence the efficiency of pollination in different ways (e.g. attraction and mechanical fit with different groups of pollinators). In the present study, we quantified the variation in flower morphology (i.e. shape and size) of the diverse South American genus Jaborosa Juss. (Solanaceae) in relation to contrasting pollination modes: rewarding pollination either by moths or by generalist small insects versus brood-site deceptive pollination by saprophilous flies. We examined variations of flower morphology in frontal (pollinator attraction) and sagittal (functional fit with pollinators) views in 12 Jaborosa species using geometric morphometric methods and comparative approaches to infer whether flower shape evolution, not attributable to flower allometry or phylogenetic relationship, is associated with shifts in pollination modes. We found remarkable variation in flower morphology among both Jaborosa species and pollination modes, largely in sagittal view. Evolutionary trends in shape of fly-pollinated flowers were mainly attributable to changes in developmental trajectories. Variation in flower architecture facilitated differential pollen placement - on the proboscis of moths, and either on the back or ventral region of saprophilous flies - promoting diversification of the genus. Diversification of shape, independent of size, in most of the studied Jaborosa species would indicate adaptation to contrasting pollination modes.
Assuntos
Dípteros , Mariposas , Solanaceae , Animais , Filogenia , Evolução Biológica , Polinização , Flores/anatomia & histologiaRESUMO
Invasive plants displaying disparate pollination environments and abiotic conditions in native and non-native ranges provide ideal systems to test the role of different ecological factors driving flower colour variation. We quantified corolla reflectance of the ornithophilous South American Nicotiana glauca in native populations, where plants are pollinated by hummingbirds, and in populations from two invaded regions: South Africa, where plants are pollinated by sunbirds, and the Balearic island of Mallorca, where plants reproduce by selfing. Using visual modelling we examined how corolla reflectance could be perceived by floral visitors present in each region. Through Mantel tests we assessed a possible association between flower colour and different abiotic factors. Corolla reflectance variation (mainly along medium to long wavelengths, i.e. human green-yellow to red colours) was greater among studied regions than within them. Flower colour was more similar between South America and South Africa, which share birds as pollinators. Within invaded regions, corolla reflectance variation was lower in South Africa, where populations could not be distinguished from each other by sunbirds, than in Spain, where populations could be distinguished from each other by their occasional visitors. Differences in corolla colour among populations were partially associated with differences in temperature. Our findings suggest that shifts in flower colour of N. glauca across native and invaded ranges could be shaped by changes in both pollination environment and climatic factors. This is the first study on plant invasions considering visual perception of different pollinators and abiotic drivers of flower colour variation.
Assuntos
Nicotiana , Polinização , Animais , Humanos , Cor , Plantas , Flores , Aves , PercepçãoRESUMO
We studied gland morphology, anatomy and the chemical composition of the floral fragrance in the sweat bee-pollinated orchid Cyclopogon elatus. This is apparently the first such analysis for any Cyclopogon species, and one of very few studies in which both odour and osmophore are characterised in a nectar-rewarding orchid. Structures responsible for floral scent production were localised with neutral red staining and histochemical assays for lipids and starch. Their morphology and anatomy were studied with scanning electron microscopy and light microscopy thin sections, respectively. Fragrance samples were collected using SPME fibres and analysed with GC-MS. Anatomical evidence suggests that two parallel oval-shaped patches of unicellular trichomes on the abaxial surface of the labellum are osmophores. These are rich in stored lipids, while the parenchyma surrounding the vascular bundles contains starch. Only freshly opened flowers produced odours, while buds and withered flowers lacked scent. The chemical composition of the odour was dominated (>99.8%) by a single compound, trans-4,8-dimethyl-nona-1,3,7-triene (DMNT). Gland anatomy and position on the outside of the perianth are unusual for scent glands in general. The presence of DMNT, a nearly ubiquitous compound in herbivore-induced vegetative emissions and one of the major floral volatiles of Yucca, is not surprising in view of hypotheses on the evolutionary origin of flower scents, suggesting that wound volatiles are utilised as kairomonal attractants by florivores whose activities result in pollination.