Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38826214

RESUMO

Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction of humans, domestic and research animals, and endangered species using cryopreserved oocytes and embryos. The nature of ice formed in bovine oocytes (similar in size to oocytes of humans and most other mammals) after rapid cooling and during rapid warming were examined using synchrotron-based time-resolved x-ray diffraction. Using cooling rates, warming rates and CPA concentrations of current practice, oocytes show no ice after cooling but always develop large ice fractions - consistent with crystallization of most free water - during warming, so most ice-related damage must occur during warming. The detailed behavior of ice at warming depended on the nature of ice formed during cooling. Increasing cooling rates allows oocytes soaked as in current practice to remain essentially ice free during both cooling and warming. Much larger convective warming rates are demonstrated and will allow routine ice-free cryopreservation with smaller CPA concentrations. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes and establish the structure and grain size of ice formed. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development in many species, improving outcomes and allowing other deleterious effects of the cryopreservation cycle to be independently studied.

2.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536910

RESUMO

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cristalografia por Raios X , Proteínas/química , Catálise , Conformação Proteica , Hidrolases
3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014098

RESUMO

Damage from ice and potential toxicity of ice-inhibiting cryoprotective agents (CPAs) are key issues in assisted reproduction using cryopreserved oocytes and embryos. We use synchrotron-based time-resolved x-ray diffraction and tools from protein cryocrystallography to characterize ice formation within bovine oocytes after cooling at rates between ∼1000 °C/min and ∼600,000°C /min and during warming at rates between 20,000 and 150,000 °C /min. Maximum crystalline ice diffraction intensity, maximum ice volume, and maximum ice grain size are always observed during warming. All decrease with increasing CPA concentration, consistent with the decreasing free water fraction. With the cooling rates, warming rates and CPA concentrations of current practice, oocytes may show no ice after cooling but always develop substantial ice fractions on warming, and modestly reducing CPA concentrations causes substantial ice to form during cooling. With much larger cooling and warming rates achieved using cryocrystallography tools, oocytes soaked as in current practice remain essentially ice free during both cooling and warming, and when soaked in half-strength CPA solution oocytes remain ice free after cooling and develop small grain ice during warming. These results clarify the roles of cooling, warming, and CPA concentration in generating ice in oocytes, establish the character of ice formed, and suggest that substantial further improvements in warming rates are feasible. Ice formation can be eliminated as a factor affecting post-thaw oocyte viability and development, allowing other deleterious effects of the cryopreservation cycle to be studied, and osmotic stress and CPA toxicity reduced. Significance Statement: Cryopreservation of oocytes and embryos is critical in assisted reproduction of humans and domestic animals and in preservation of endangered species. Success rates are limited by damage from crystalline ice, toxicity of cryoprotective agents (CPAs), and damage from osmotic stress. Time-resolved x-ray diffraction of bovine oocytes shows that ice forms much more readily during warming than during cooling, that maximum ice fractions always occur during warming, and that the tools and large CPA concentrations of current protocols can at best only prevent ice formation during cooling. Using tools from cryocrystallography that give dramatically larger cooling and warming rates, ice formation can be completely eliminated and required CPA concentrations substantially reduced, expanding the scope for species-specific optimization of post-thaw reproductive outcomes.

4.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524069

RESUMO

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

5.
IUCrJ ; 8(Pt 5): 784-792, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584739

RESUMO

Time-resolved crystallography of biomolecules in action has advanced rapidly as methods for serial crystallography have improved, but the large number of crystals and the complex experimental infrastructure that are required remain serious obstacles to its widespread application. Here, millisecond mix-and-quench crystallography (MMQX) has been developed, which yields millisecond time-resolved data using far fewer crystals and routine remote synchrotron data collection. To demonstrate the capabilities of MMQX, the conversion of oxaloacetic acid to phosphoenolpyruvate by phosphoenolpyruvate carboxy-kinase (PEPCK) is observed with a time resolution of 40 ms. By lowering the entry barrier to time-resolved crystallography, MMQX should enable a broad expansion in structural studies of protein dynamics.

6.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 540-554, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825714

RESUMO

Diffraction data acquired from cryocooled protein crystals often include diffraction from ice. Analysis of ice diffraction from crystals of three proteins shows that the ice formed within solvent cavities during rapid cooling is comprised of a stacking-disordered mixture of hexagonal and cubic planes, with the cubic plane fraction increasing with increasing cryoprotectant concentration and increasing cooling rate. Building on the work of Thorn and coworkers [Thorn et al. (2017), Acta Cryst. D73, 729-727], a revised metric is defined for detecting ice from deposited protein structure-factor data, and this metric is validated using full-frame diffraction data from the Integrated Resource for Reproducibility in Macromolecular Crystallography. Using this revised metric and improved algorithms, an analysis of structure-factor data from a random sample of 89 827 PDB entries collected at cryogenic temperatures indicates that roughly 16% show evidence of ice contamination, and that this fraction increases with increasing solvent content and maximum solvent-cavity size. By examining the ice diffraction-peak positions at which structure-factor perturbations are observed, it is found that roughly 25% of crystals exhibit ice with primarily hexagonal character, indicating that inadequate cooling rates and/or cryoprotectant concentrations were used, while the remaining 75% show ice with a stacking-disordered or cubic character.


Assuntos
Crioprotetores/química , Cristalização/métodos , Gelo , Substâncias Macromoleculares/química , Proteínas/química , Cristalografia por Raios X
7.
IUCrJ ; 6(Pt 6): 1040-1053, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709060

RESUMO

The local Fourier-space relation between diffracted intensity I, diffraction wavevector q and dose D, , is key to probing and understanding radiation damage by X-rays and energetic particles in both diffraction and imaging experiments. The models used in protein crystallography for the last 50 years provide good fits to experimental I(q) versus nominal dose data, but have unclear physical significance. More recently, a fit to diffraction and imaging experiments suggested that the maximum tolerable dose varies as q -1 or linearly with resolution. Here, it is shown that crystallographic data have been strongly perturbed by the effects of spatially nonuniform crystal irradiation and diffraction during data collection. Reanalysis shows that these data are consistent with a purely exponential local dose dependence, = I 0(q)exp[-D/D e(q)], where D e(q) ∝ q α with α ≃ 1.7. A physics-based model for radiation damage, in which damage events occurring at random locations within a sample each cause energy deposition and blurring of the electron density within a small volume, predicts this exponential variation with dose for all q values and a decay exponent α ≃ 2 in two and three dimensions, roughly consistent with both diffraction and imaging experiments over more than two orders of magnitude in resolution. The B-factor model used to account for radiation damage in crystallographic scaling programs is consistent with α = 2, but may not accurately capture the dose dependencies of structure factors under typical nonuniform illumination conditions. The strong q dependence of radiation-induced diffraction decays implies that the previously proposed 20-30 MGy dose limit for protein crystallography should be replaced by a resolution-dependent dose limit that, for atomic resolution data sets, will be much smaller. The results suggest that the physics underlying basic experimental trends in radiation damage at T ≃ 100 K is straightforward and universal. Deviations of the local I(q, D) from strictly exponential behavior may provide mechanistic insights, especially into the radiation-damage processes responsible for the greatly increased radiation sensitivity observed at T ≃ 300 K.

8.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 980-994, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31692472

RESUMO

When protein crystals are abruptly cooled, the unit-cell, protein and solvent-cavity volumes all contract, but the volume of bulk-like internal solvent may expand. Outflow of this solvent from the unit cell and its accumulation in defective interior crystal regions has been suggested as one cause of the large increase in crystal mosaicity on cooling. It is shown that when apoferritin crystals are abruptly cooled to temperatures between 220 and 260 K, the unit cell contracts, solvent is pushed out and the mosaicity grows. On temperature-dependent timescales of 10 to 200 s, the unit-cell and solvent-cavity volume then expand, solvent flows back in, and the mosaicity and B factor both drop. Expansion and reordering at fixed low temperature are associated with small-amplitude but large-scale changes in the conformation and packing of apoferritin. These results demonstrate that increases in mosaicity on cooling arise due to solvent flows out of or into the unit cell and to incomplete, arrested relaxation of protein conformation. They indicate a critical role for time in variable-temperature crystallographic studies, and the feasibility of probing interactions and cooperative conformational changes that underlie cold denaturation in the presence of liquid solvent at temperatures down to ∼200 K.


Assuntos
Apoferritinas/química , Cristalização/métodos , Cristalografia por Raios X/métodos , Conformação Proteica , Animais , Crioprotetores/química , Solventes , Temperatura
9.
IUCrJ ; 6(Pt 3): 346-356, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098016

RESUMO

Ice formation within protein crystals is a major obstacle to the cryocrystallographic study of protein structure, and has limited studies of how the structural ensemble of a protein evolves with temperature in the biophysically interesting range from ∼260 K to the protein-solvent glass transition near 200 K. Using protein crystals with solvent cavities as large as ∼70 Å, time-resolved X-ray diffraction was used to study the response of protein and internal solvent during rapid cooling. Solvent nanoconfinement suppresses freezing temperatures and ice-nucleation rates so that ice-free, low-mosaicity diffraction data can be reliably collected down to 200 K without the use of cryoprotectants. Hexagonal ice (Ih) forms in external solvent, but internal crystal solvent forms stacking-disordered ice (Isd) with a near-random stacking of cubic and hexagonal planes. Analysis of powder diffraction from internal ice and single-crystal diffraction from the host protein structure shows that the maximum crystallizable solvent fraction decreases with decreasing crystal solvent-cavity size, and that an ∼6 Šthick layer of solvent adjacent to the protein surface cannot crystallize. These results establish protein crystals as excellent model systems for the study of nanoconfined solvent. By combining fast cooling, intense X-ray beams and fast X-ray detectors, complete structural data sets for high-value targets, including membrane proteins and large complexes, may be collected at ∼220-240 K that have much lower mosaicities and comparable B factors, and that may allow more confident identification of ligand binding than in current cryocrystallographic practice.

10.
Acta Crystallogr D Struct Biol ; 74(Pt 4): 264-278, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29652254

RESUMO

The modulation of main-chain and side-chain conformational heterogeneity and solvent structure in monoclinic lysozyme crystals by dehydration (related to water activity) and temperature is examined. Decreasing the relative humidity (from 99 to 11%) and decreasing the temperature both lead to contraction of the unit cell, to an increased area of crystal contacts and to remodeling of primarily contact and solvent-exposed residues. Both lead to the depopulation of some minor side-chain conformers and to the generation of new conformations. Side-chain modifications and main-chain r.m.s.d.s associated with cooling from 298 to 100 K depend on relative humidity and are minimized at 85% relative humidity (r.h.). Dehydration from 99 to 93% r.h. and cooling from 298 to 100 K result in a comparable number of remodeled residues, with dehydration-induced remodeling somewhat more likely to arise from contact interactions. When scaled to equivalent temperatures based on unit-cell contraction, the evolution of side-chain order parameters with dehydration shows generally similar features to those observed on cooling to T = 100 K. These results illuminate the qualitative and quantitative similarities between structural perturbations induced by modest dehydration, which routinely occurs in samples prepared for 298 and 100 K data collection, and cryocooling. Differences between these perturbations in terms of energy landscapes and occupancies, and implications for variable-temperature crystallography between 180 and 298 K, are discussed. It is also noted that remodeling of a key lysozyme active-site residue by dehydration, which is associated with a radical decrease in the enzymatic activity of lysozyme powder, arises due to a steric clash with the residue of a symmetry mate.


Assuntos
Muramidase/química , Temperatura , Água/química , Domínio Catalítico , Cristalização/métodos , Cristalografia por Raios X , Conformação Proteica
11.
IUCrJ ; 4(Pt 4): 495-505, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875036

RESUMO

Microbial nitrite reductases are denitrifying enzymes that are a major component of the global nitrogen cycle. Multiple structures measured from one crystal (MSOX data) of copper nitrite reductase at 240 K, together with molecular-dynamics simulations, have revealed protein dynamics at the type 2 copper site that are significant for its catalytic properties and for the entry and exit of solvent or ligands to and from the active site. Molecular-dynamics simulations were performed using different protonation states of the key catalytic residues (AspCAT and HisCAT) involved in the nitrite-reduction mechanism of this enzyme. Taken together, the crystal structures and simulations show that the AspCAT protonation state strongly influences the active-site solvent accessibility, while the dynamics of the active-site 'capping residue' (IleCAT), a determinant of ligand binding, are influenced both by temperature and by the protonation state of AspCAT. A previously unobserved conformation of IleCAT is seen in the elevated temperature series compared with 100 K structures. DFT calculations also show that the loss of a bound water ligand at the active site during the MSOX series is consistent with reduction of the type 2 Cu atom.

12.
J Vis Exp ; (124)2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28715388

RESUMO

We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements. The density of the liquid N2-Ar mixture is adjusted by adding N2 or Ar until the drop becomes neutrally buoyant. The density of this mixture and thus of the drop is determined using a test mass and Archimedes principle. With appropriate care in drop preparation, management of gas above the liquid cryogen mixture to minimize icing, and regular mixing of the cryogenic mixture to prevent density stratification and phase separation, densities accurate to <0.5% of drops as small as 50 pL can readily be determined. Measurements on aqueous cryoprotectant mixtures provide insight into cryoprotectant action, and provide quantitative data to facilitate thermal contraction matching in biological cryopreservation.


Assuntos
Criopreservação/métodos , Crioprotetores/uso terapêutico , Vidro/química , Água/química , Temperatura Baixa
13.
Acta Crystallogr D Struct Biol ; 72(Pt 6): 742-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27303794

RESUMO

The thermal contraction of aqueous cryoprotectant solutions on cooling to cryogenic temperatures is of practical importance in protein cryocrystallography and in biological cryopreservation. In the former case, differential contraction on cooling of protein molecules and their lattice relative to that of the internal and surrounding solvent may lead to crystal damage and the degradation of crystal diffraction properties. Here, the amorphous phase densities of aqueous solutions of glycerol and ethylene glycol at T = 77 K have been determined. Densities with accuracies of <0.5% to concentrations as low as 30%(w/v) were determined by rapidly cooling drops with volumes as small as 70 pl, assessing their optical clarity and measuring their buoyancy in liquid nitrogen-argon solutions. The use of these densities in contraction matching of internal solvent to the available solvent spaces is complicated by several factors, most notably the exclusion of cryoprotectants from protein hydration shells and the expected deviation of the contraction behavior of hydration water from bulk water. The present methods and results will assist in developing rational approaches to cryoprotection and an understanding of solvent behavior in protein crystals.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Etilenoglicol/química , Glicerol/química , Proteínas/química , Vitrificação , Criopreservação/instrumentação , Desenho de Equipamento , Tamanho da Amostra , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...