Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 38(17): e9855, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38988294

RESUMO

RATIONALE: Rivaroxaban is an anticoagulant prescribed to patients who are at risk of medical conditions such as deep-vein thrombosis, pulmonary embolisms, and strokes caused by blood clots. The administration of this drug is monitored to adjust the dosage and evaluate patients' blood concentration. Rapid quantification of this drug in plasma could make it possible to ensure that the dose present in the blood of patients does not represent a danger for the medical intervention to be carried out. METHODS: Liquid chromatography-tandem mass spectrometry is usually employed to quantify rivaroxaban in blood, plasma, and serum. Here, an alternative method of analysis based on laser diode thermal desorption-triple quadrupole mass spectrometry (LDTD-QqQMS) was developed and comprehensively validated. This new method allows the quantification of rivaroxaban in less than 13 s from sample to sample. The extraction of rivaroxaban in human serum was done by a salting-out liquid-liquid extraction with acetonitrile and a saturated sodium chloride solution. RESULTS: The proposed method allows the quantification of rivaroxaban in less than 13 s from sample to sample. During validation, all criteria were respected. The accuracy was <15% of the nominal value, the precision was <15%CV, and the recovery was ≥89.9%. There were no observed carryover or matrix effects. Analysis of the extracted samples established the stability of dry (24 h) and wet samples (1 week) when samples cannot be analyzed immediately, a considerable advantage in a clinical setting. CONCLUSIONS: This method improves sample throughput by more than 1200% compared to liquid chromatography-tandem mass spectrometry methods of analysis of rivaroxaban and decreases analysis costs by reducing solvent consumption and instrument time.


Assuntos
Rivaroxabana , Espectrometria de Massas em Tandem , Rivaroxabana/sangue , Humanos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Modelos Lineares
2.
Rapid Commun Mass Spectrom ; 36(20): e9373, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35933590

RESUMO

RATIONALE: The COVID-19 pandemic demonstrated the importance of high-throughput analysis for public health. Given the importance of surface viral proteins for interactions with healthy tissue, they are targets of interest for mass spectrometry-based analysis. For that reason, the possibility of detecting and quantifying peptides using a high-throughput technique, laser diode thermal desorption-triple quadrupole mass spectrometry (LDTD-QqQMS), was explored. METHODS: Two peptides used as models for small peptides (leu-enkephalin and endomorphin-2) and four tryptic peptides (GVYYPDK, NIDGYFK, IADYNYK, and QIAPGQTGK) specific to the SARS-CoV-2 Spike protein were employed. Target peptides were analyzed individually in the positive mode by LDTD-QqQMS. Peptides were quantified by internal calibration using selected reaction monitoring transitions in pure solvents and in samples spiked with 20 µg mL-1 of a bovine serum albumin tryptic digest to represent real analysis conditions. RESULTS: Low-energy fragment ions (b and y ions) as well as high-energy fragment ions (c and x ions) and some of their corresponding water or ammonia losses were detected in the full mass spectra. Only for the smallest peptides, leu-enkephalin and endomorphin-2, were [M + H]+ ions observed. Product ion spectra confirmed that, with the experimental conditions used in the present study, LDTD transfers a considerable amount of energy to the target peptides. Quantitative analysis showed that it was possible to quantify peptides using LDTD-QqQMS with acceptable calibration curve linearity (R2 > 0.99), precision (RSD < 18.2%), and trueness (bias < 8.3%). CONCLUSIONS: This study demonstrated for the first time that linear peptides can be qualitatively and quantitatively analyzed using LDTD-QqQMS. Limits of quantification and dynamic ranges are still inadequate for clinical applications, but other applications where higher levels of proteins must be detected could be possible with LDTD. Given the high-throughput capabilities of LDTD-QqQMS (>15 000 samples in less than 43 h), more studies are needed to improve the sensitivity for peptide analysis of this technique.


Assuntos
COVID-19 , Espectrometria de Massas em Tandem , Encefalina Leucina , Humanos , Íons , Lasers , Pandemias , Peptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...