Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroinform ; 15: 689675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483871

RESUMO

We present Clinica (www.clinica.run), an open-source software platform designed to make clinical neuroscience studies easier and more reproducible. Clinica aims for researchers to (i) spend less time on data management and processing, (ii) perform reproducible evaluations of their methods, and (iii) easily share data and results within their institution and with external collaborators. The core of Clinica is a set of automatic pipelines for processing and analysis of multimodal neuroimaging data (currently, T1-weighted MRI, diffusion MRI, and PET data), as well as tools for statistics, machine learning, and deep learning. It relies on the brain imaging data structure (BIDS) for the organization of raw neuroimaging datasets and on established tools written by the community to build its pipelines. It also provides converters of public neuroimaging datasets to BIDS (currently ADNI, AIBL, OASIS, and NIFD). Processed data include image-valued scalar fields (e.g., tissue probability maps), meshes, surface-based scalar fields (e.g., cortical thickness maps), or scalar outputs (e.g., regional averages). These data follow the ClinicA Processed Structure (CAPS) format which shares the same philosophy as BIDS. Consistent organization of raw and processed neuroimaging files facilitates the execution of single pipelines and of sequences of pipelines, as well as the integration of processed data into statistics or machine learning frameworks. The target audience of Clinica is neuroscientists or clinicians conducting clinical neuroscience studies involving multimodal imaging, and researchers developing advanced machine learning algorithms applied to neuroimaging data.

2.
Hum Brain Mapp ; 41(11): 2926-2950, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32243676

RESUMO

White matter bundles linking gray matter nodes are key anatomical players to fully characterize associations between brain systems and cognitive functions. Here we used a multivariate lesion inference approach grounded in coalitional game theory (multiperturbation Shapley value analysis, MSA) to infer causal contributions of white matter bundles to visuospatial orienting of attention. Our work is based on the characterization of the lesion patterns of 25 right hemisphere stroke patients and the causal analysis of their impact on three neuropsychological tasks: line bisection, letter cancellation, and bells cancellation. We report that, out of the 11 white matter bundles included in our MSA coalitions, the optic radiations, the inferior fronto-occipital fasciculus and the anterior cingulum were the only tracts to display task-invariant contributions (positive, positive, and negative, respectively) to the tasks. We also report task-dependent influences for the branches of the superior longitudinal fasciculus and the posterior cingulum. By extending prior findings to white matter tracts linking key gray matter nodes, we further characterize from a network perspective the anatomical basis of visual and attentional orienting processes. The knowledge about interactions patterns mediated by white matter tracts linking cortical nodes of attention orienting networks, consolidated by further studies, may help develop and customize brain stimulation approaches for the rehabilitation of visuospatial neglect.


Assuntos
Atenção/fisiologia , Córtex Cerebral/patologia , Substância Cinzenta/patologia , Acidente Vascular Cerebral Hemorrágico , AVC Isquêmico , Rede Nervosa/patologia , Neuroimagem , Transtornos da Percepção , Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Substância Branca/patologia , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Feminino , Teoria dos Jogos , Substância Cinzenta/diagnóstico por imagem , Acidente Vascular Cerebral Hemorrágico/complicações , Acidente Vascular Cerebral Hemorrágico/diagnóstico por imagem , Acidente Vascular Cerebral Hemorrágico/patologia , Acidente Vascular Cerebral Hemorrágico/fisiopatologia , Humanos , AVC Isquêmico/complicações , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/patologia , AVC Isquêmico/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Neuroimagem/métodos , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/etiologia , Transtornos da Percepção/patologia , Transtornos da Percepção/fisiopatologia , Substância Branca/diagnóstico por imagem
3.
Front Neuroinform ; 9: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914640

RESUMO

Different non-invasive neuroimaging modalities and multi-level analysis of human connectomics datasets yield a great amount of heterogeneous data which are hard to integrate into an unified representation. Biomedical ontologies can provide a suitable integrative framework for domain knowledge as well as a tool to facilitate information retrieval, data sharing and data comparisons across scales, modalities and species. Especially, it is urgently needed to fill the gap between neurobiology and in vivo human connectomics in order to better take into account the reality highlighted in Magnetic Resonance Imaging (MRI) and relate it to existing brain knowledge. The aim of this study was to create a neuroanatomical ontology, called "Human Connectomics Ontology" (HCO), in order to represent macroscopic gray matter regions connected with fiber bundles assessed by diffusion tractography and to annotate MRI connectomics datasets acquired in the living human brain. First a neuroanatomical "view" called NEURO-DL-FMA was extracted from the reference ontology Foundational Model of Anatomy (FMA) in order to construct a gross anatomy ontology of the brain. HCO extends NEURO-DL-FMA by introducing entities (such as "MR_Node" and "MR_Route") and object properties (such as "tracto_connects") pertaining to MR connectivity. The Web Ontology Language Description Logics (OWL DL) formalism was used in order to enable reasoning with common reasoning engines. Moreover, an experimental work was achieved in order to demonstrate how the HCO could be effectively used to address complex queries concerning in vivo MRI connectomics datasets. Indeed, neuroimaging datasets of five healthy subjects were annotated with terms of the HCO and a multi-level analysis of the connectivity patterns assessed by diffusion tractography of the right medial Brodmann Area 6 was achieved using a set of queries. This approach can facilitate comparison of data across scales, modalities and species.

4.
Surg Radiol Anat ; 36(2): 125-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23820893

RESUMO

PURPOSE: Because of the motor function of the precentral area, the connections of the primary motor cortex by white matter fiber bundles have been widely studied in diffusion tensor imaging (DTI). Nevertheless, the connections within the primary motor cortex have yet to be explored. We have studied the connectivity between the different regions of the precentral gyrus in a population of subjects. METHODS: Based on T1 magnetic resonance imaging (MRI) and on individual sulco-gyral anatomy, we defined a parcellation of the right and the left precentral gyri in 20 healthy subjects (10 right-handers; 10 left-handers). This parcellation gave us the opportunity to study MRI tracks reconstructed by tractography within the precentral gyrus and to compare these connections across subjects. We also performed a classical dissection of post-mortem brain tissue to isolate this pattern of connectivity. RESULTS: We showed MRI tracks connecting the different parts of the same precentral gyrus. This result was reproducible and was found in the left and right hemispheres of the 20 subjects. A quantitative description of the bilateral distribution of the MRI tracks was performed, based on statistical analysis and asymmetry indices, to compare asymmetry and handedness. CONCLUSIONS: To the best of our knowledge, this pattern of connectivity has never before been detailed in the literature. Its functional meaning remains to be determined, which requires further study.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Córtex Motor/anatomia & histologia , Vias Neurais/anatomia & histologia , Adolescente , Adulto , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Valores de Referência , Adulto Jovem
5.
Neuroradiology ; 54(11): 1275-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22854806

RESUMO

INTRODUCTION: Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness. METHODS: Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness. RESULTS: The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers. CONCLUSION: These results raise questions about the functional role of these MRI tracks and their relation with laterality.


Assuntos
Encéfalo/fisiologia , Imagem de Tensor de Difusão , Fibras Nervosas Mielinizadas/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...