Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033510

RESUMO

Utilization of in vitro (cellular) techniques, like Cell Painting and transcriptomics, could provide powerful tools for agrochemical candidate sorting and selection in the discovery process. However, using these models generates challenges translating in vitro concentrations to the corresponding in vivo exposures. Physiologically based pharmacokinetic (PBPK) modeling provides a framework for quantitative in vitro to in vivo extrapolation (IVIVE). We tested whether in vivo (rat liver) transcriptomic and apical points of departure (PODs) could be accurately predicted from in vitro (rat hepatocyte or human HepaRG) transcriptomic PODs or HepaRG Cell Painting PODs using PBPK modeling. We compared two PBPK models, the ADMET predictor and the httk R package, and found httk to predict the in vivo PODs more accurately. Our findings suggest that a rat liver apical and transcriptomic POD can be estimated utilizing a combination of in vitro transcriptome-based PODs coupled with PBPK modeling for IVIVE. Thus, high content in vitro data can be translated with modest accuracy to in vivo models of ultimate regulatory importance to help select agrochemical analogs in early stage discovery program.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...