Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(1): 32, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188310

RESUMO

The objective of this study was to purify sodium maltobionate using Zymomonas mobilis cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL-1. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL-1 for Salmonella enterica serovar Choleraesuis, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL-1. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03879-3.

2.
Food Sci Technol Int ; 29(1): 25-39, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34756149

RESUMO

Edible coating can improve fruits shelf life and, consequently, reduce their waste. Chitosan, which presents a potential for chemical modifications and capacity to form films, can be an alternative for coating due to its biocompatibility, biodegradability, and antimicrobial properties. Chitosan film can be obtained through casting method presenting suitable mechanical properties, such as resistance to traction and elongation, ability to adhere to surfaces and selective permeability to gases, such as O2 and CO2. However, it is highly permeable to water vapor, which can limit its potential coating use. The properties of chitosan films can be improved through the formation of composites by inserting nanoclays as montmorillonite in the polymeric matrix. The objective of this study was to develop and characterize chitosan/montmorillonite nanocomposites for fruit coating aiming for future applications in the field of smart packaging. Nanocomposites were characterized by its microstructure, thermal, mechanical, and physicochemical properties. X-ray diffraction analysis indicated changes in crystallinity with the insertion of montmorillonite. Nanocomposites became more transparent and significantly reduced its water permeability rate with 0.5% w/w montmorillonite addition. Elastic rigidity and tensile strength of the films were improved. Chitosan/montmorillonite nanocomposites demonstrated the potential to improve the storage time of Williams pears.


Assuntos
Quitosana , Filmes Comestíveis , Nanocompostos , Bentonita/química , Quitosana/química , Nanocompostos/química , Resistência à Tração , Permeabilidade , Embalagem de Alimentos/métodos
3.
Food Sci Technol Int ; 29(4): 310-317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35238680

RESUMO

This study evaluated the influence of O2-absorbing sachets into different packages polyethylene terephthalate (PET - E1), low density polyethylene (LDPE - E2), and PET/LDPE (E3) on the quality of minimally processed soybean sprouts (MP-sprouts). The MP-sprouts were stored up to 12 days and characterized for physicochemical, microbiological and sensory attributes. The O2-absorbing sachet showed changes during exposure to the environment by the formation of amorphous iron hydroxide, which was observed by the analysis of functional groups and XRD. The packaging used in the study showed high transmittance and clarity, and low Haze, being a good feature for storing the MP product. All packaging systems showed an increase in the volume of absorbed oxygen (cm3) up to 9 days of storage. The physic-chemical characteristics of the MP-sprouts stored for 12 days were preserved in the different packages, showing no difference regarding the use of the O2-absorbing sachet. The O2-absorbing sachet not influenced the quality of MP-sprouts during the stored (12 days). The best visual aspect was observed in PET package (with and without O2-absorbing sachet) being classified as excellent, without color change. The MP-sprouts also fulfilled the microbiological quality standards and presented 75.11% acceptability and 72.40% purchase intention.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Glycine max , Polietileno , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...