Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890314

RESUMO

The worldwide increase in serious infections caused by multidrug-resistant (MDR) K. pneumoniae emphasizes the urgent need of new therapeutic strategies for the control of this pathogen. There is growing interest in the use of bacteriophages (or phages) to treat K. pneumoniae infections, and newly isolated phages are needed. Here, we report the isolation and physical/biological/molecular characterization of a novel lytic phage and its efficacy in the control of MDR K. pneumoniae. The phage vB_KpnS_Uniso31, referred to hereafter as phage Kpn31, was isolated from hospital wastewater using K. pneumoniae CCCD-K001 as the host. Phage Kpn31 presents a siphovirus-like morphotype and was classified as Demerecviridae; Sugarlandvirus based on its complete genome sequence. The 113,444 bp Kpn31 genome does not encode known toxins or antimicrobial resistance genes, nor does it encode depolymerases related sequences. Phage Kpn31 showed an eclipse time of 15 min and a burst size of 9.12 PFU/host cell, allowing us to conclude it replicates well in K. pneumoniae CCCD-K001 with a latency period of 30 min. Phage Kpn31 was shown to be effective against at least six MDR K. pneumoniae clinical isolates in in vitro antibacterial activity assays. Based on its features, phage Kpn31 has potential for controlling infections caused by MDR K. pneumoniae.

2.
Biosensors (Basel) ; 11(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921071

RESUMO

During the last decennium, it has become widely accepted that ubiquitous bacterial viruses, or bacteriophages, exert enormous influences on our planet's biosphere, killing between 4-50% of the daily produced bacteria and constituting the largest genetic diversity pool on our planet. Currently, bacterial infections linked to healthcare services are widespread, which, when associated with the increasing surge of antibiotic-resistant microorganisms, play a major role in patient morbidity and mortality. In this scenario, Pseudomonas aeruginosa alone is responsible for ca. 13-15% of all hospital-acquired infections. The pathogen P. aeruginosa is an opportunistic one, being endowed with metabolic versatility and high (both intrinsic and acquired) resistance to antibiotics. Bacteriophages (or phages) have been recognized as a tool with high potential for the detection of bacterial infections since these metabolically inert entities specifically attach to, and lyse, bacterial host cells, thus, allowing confirmation of the presence of viable cells. In the research effort described herein, three different phages with broad lytic spectrum capable of infecting P. aeruginosa were isolated from environmental sources. The isolated phages were elected on the basis of their ability to form clear and distinctive plaques, which is a hallmark characteristic of virulent phages. Next, their structural and functional stabilization was achieved via entrapment within the matrix of porous alginate, biopolymeric, and bio-reactive, chromogenic hydrogels aiming at their use as sensitive matrices producing both color changes and/or light emissions evolving from a reaction with (released) cytoplasmic moieties, as a bio-detection kit for P. aeruginosa cells. Full physicochemical and biological characterization of the isolated bacteriophages was the subject of a previous research paper.


Assuntos
Técnicas Biossensoriais , Farmacorresistência Bacteriana Múltipla , Pseudomonas aeruginosa/isolamento & purificação , Alginatos , Bacteriófagos , Humanos , Hidrogéis
3.
Res Vet Sci ; 135: 42-58, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33440244

RESUMO

In the present research work, we propose a new antimicrobial treatment for pyoderma via cutaneous permeation of bacteriophage particles conveyed in a hydroxyethylcellulose (HEC) gel integrating ionic liquid as a permeation enhancer. Ionic liquids are highly viscous fluids constituted exclusively by ions, that are usually hydrolytically stable and promote solubilization of amphipathic molecules such as proteins, hence serving as green solvents and promoting the transdermal permeation of biomolecules. In the research effort entertained herein, the synthesis and use of choline geranate for integrating a HEC gel aiming at the structural and functional stabilization of a cocktail of isolated lytic bacteriophage particles was sought, aiming at transdermal permeation in the antimicrobial treatment of animal pyoderma. The results obtained showed a high ability of the ionic liquid in enhancing transdermal permeation of the bacteriophage particles, with concomitant high potential of the HEC gel formulation in the antimicrobial treatment of animal skin infections.


Assuntos
Celulose/análogos & derivados , Colina/química , Terapia por Fagos/veterinária , Staphylococcus intermedius/virologia , Administração Cutânea , Animais , Bacteriófagos , Linhagem Celular , Sobrevivência Celular , Celulose/química , Cães/microbiologia , Cavalos/microbiologia , Humanos , Líquidos Iônicos/química , Líquidos Iônicos/metabolismo , Testes de Mutagenicidade , Permeabilidade , Pioderma/tratamento farmacológico , Pioderma/veterinária , Pele/metabolismo , Solventes
4.
Front Pharmacol ; 11: 243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32390824

RESUMO

In this research project, synthesis and characterization of ionic liquids and their subsequent utilization as facilitators of transdermal delivery of human insulin was pursued. Choline geranate and choline oleate ionic liquids (and their deep eutectic solvents) were produced and characterized by nuclear magnetic resonance (1H NMR), water content, oxidative stability, cytotoxicity and genotoxicity assays, and ability to promote transdermal protein permeation. The results gathered clearly suggest that all ionic liquids were able to promote/facilitate transdermal permeation of insulin, although to various extents. In particular, choline geranate 1:2 combined with its virtually nil cyto- and geno-toxicity was chosen to be incorporated in a biopolymeric formulation making it a suitable facilitator aiming at transdermal delivery of insulin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...