Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18815, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914772

RESUMO

During the Roman domain of the Iberian Peninsula (from 201 BCE to 460 CE) water management infrastructures were built to satisfy high water demand. However, whether the Roman activities affected the hydrological balance of Iberian wetlands remains unclear. Here, we investigate the paleo-hydrology of Lake Zóñar (southern Iberia) by using the stable isotopes (16O, 17O, 18O, 1H and 2H) of its gypsum (CaSO4·2H2O) sediments and reconstruct the isotopic composition of the lake water during Roman times. A period of recurrent lake low stand occurred between 2120 and 1890 cal. yr BP (ca. 170 BCE to 60 CE), coinciding with a relatively dry climate stage recorded by most regional paleoclimate archives. The stable isotopes and hydrochemistry of the lake water during gypsum precipitation are consistent with a shallow saline lake that evaporated under relative humidity ~ 10% lower than the present annual mean and at least 20% less rainfall amount. Our analytical and archeological findings support lake level lowering during the Roman period was probably caused by combined arid climate conditions and diversion of the inlets feeding the lake. Spring capturing was likely necessary to satisfy the high water demand of nearby Roman settlements, in the framework of a period of persistent droughts.

2.
Sci Total Environ ; 533: 506-19, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26186465

RESUMO

Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency).


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/análise , Lagos/química , Poluição da Água/estatística & dados numéricos , Mudança Climática , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...