Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010784

RESUMO

The metabolism of tetrahydrofolate (H4PteGlun)-bound one-carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10-methylene-H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-H4PteGlun, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.

2.
Plant Direct ; 5(12): e366, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977450

RESUMO

Photorespiration recovers carbon that would be otherwise lost following the oxygenation reaction of rubisco and production of glycolate. Photorespiration is essential in plants and recycles glycolate into usable metabolic products through reactions spanning the chloroplast, mitochondrion, and peroxisome. Catalase in peroxisomes plays an important role in this process by disproportionating H2O2 resulting from glycolate oxidation into O2 and water. We hypothesize that catalase in the peroxisome also protects against nonenzymatic decarboxylations between hydrogen peroxide and photorespiratory intermediates (glyoxylate and/or hydroxypyruvate). We test this hypothesis by detailed gas exchange and biochemical analysis of Arabidopsis thaliana mutants lacking peroxisomal catalase. Our results strongly support this hypothesis, with catalase mutants showing gas exchange evidence for an increased stoichiometry of CO2 release from photorespiration, specifically an increase in the CO2 compensation point, a photorespiratory-dependent decrease in the quantum efficiency of CO2 assimilation, increase in the 12CO2 released in a 13CO2 background, and an increase in the postillumination CO2 burst. Further metabolic evidence suggests this excess CO2 release occurred via the nonenzymatic decarboxylation of hydroxypyruvate. Specifically, the catalase mutant showed an accumulation of photorespiratory intermediates during a transient increase in rubisco oxygenation consistent with this hypothesis. Additionally, end products of alternative hypotheses explaining this excess release were similar between wild type and catalase mutants. Furthermore, the calculated rate of hydroxypyruvate decarboxylation in catalase mutant is much higher than that of glyoxylate decarboxylation. This work provides evidence that these nonenzymatic decarboxylation reactions, predominately hydroxypyruvate decarboxylation, can occur in vivo when photorespiratory metabolism is genetically disrupted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...