Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(15): E3041-E3050, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348229

RESUMO

Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation-in particular, at tyrosine 48-is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects.


Assuntos
Citocromos c/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Tirosina/química , Citocromos c/química , Citocromos c/genética , Humanos , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo , Mutação , Peroxidases/metabolismo , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/metabolismo , Fosforilação , Conformação Proteica , Transdução de Sinais , Tirosina/genética , Tirosina/metabolismo
2.
Chemistry ; 21(42): 15004-12, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26329855

RESUMO

Phosphorylation of tyrosine 48 of cytochrome c is related to a wide range of human diseases due to the pleiotropic role of the heme-protein in cell life and death. However, the structural conformation and physicochemical properties of phosphorylated cytochrome c are difficult to study as its yield from cell extracts is very low and its kinase remains unknown. Herein, we report a high-yielding synthesis of a close mimic of phosphorylated cytochrome c, developed by optimization of the synthesis of the non-canonical amino acid p-carboxymethyl-L-phenylalanine (pCMF) and its efficient site-specific incorporation at position 48. It is noteworthy that the Y48pCMF mutation significantly destabilizes the Fe-Met bond in the ferric form of cytochrome c, thereby lowering the pKa value for the alkaline transition of the heme-protein. This finding reveals the differential ability of the phosphomimic protein to drive certain events. This modified cytochrome c might be an important tool to investigate the role of the natural protein following phosphorylation.

3.
Proc Natl Acad Sci U S A ; 112(32): 9908-13, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216969

RESUMO

Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iß interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iß to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iß. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iß, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iß's histone chaperone activity.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Animais , Ligação Competitiva/efeitos dos fármacos , Camptotecina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Células HeLa , Chaperonas de Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Xenopus
4.
FEBS Lett ; 589(4): 476-83, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25595453

RESUMO

The transient interactions of respiratory cytochrome c with complexes III and IV is herein investigated by using heterologous proteins, namely human cytochrome c, the soluble domain of plant cytochrome c1 and bovine cytochrome c oxidase. The binding molecular mechanisms of the resulting cross-complexes have been analyzed by Nuclear Magnetic Resonance and Isothermal Titration Calorimetry. Our data reveal that the two cytochrome c-involving adducts possess a 2:1 stoichiometry - that is, two cytochrome c molecules per adduct - at low ionic strength. We conclude that such extra binding sites at the surfaces of complexes III and IV can facilitate the turnover and sliding of cytochrome c molecules and, therefore, the electron transfer within respiratory supercomplexes.


Assuntos
Citocromos c/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Animais , Bovinos , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Ligação Proteica , Estrutura Quaternária de Proteína , Soluções
5.
Biochim Biophys Acta ; 1837(10): 1717-29, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25091281

RESUMO

In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.


Assuntos
Citocromos c1/metabolismo , Plantas/enzimologia , Sequência de Bases , Sítios de Ligação , Citocromos c1/genética , Primers do DNA , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Ultracentrifugação
6.
Biochim Biophys Acta ; 1837(8): 1305-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24685428

RESUMO

The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.


Assuntos
Citocromos c6/química , Citocromos f/química , Complexos Multiproteicos/química , Fotossíntese , Cianobactérias/química , Cianobactérias/metabolismo , Citocromos c6/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Complexos Multiproteicos/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Difração de Raios X
7.
J Phys Chem Lett ; 5(5): 910-4, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26274087

RESUMO

Electron-transfer kinetics of the thermophilic protein Plastocyanin from Phormidium laminosum adsorbed on 1,ω-alkanedithiol self-assembled monolayers (SAMs) deposited on gold have been investigated. The standard electron-transfer rate constant has been determined as a function of electrode-protein distance and solution viscosity over a broad temperature range (0-90 °C). For either thin or thick SAMs, the electron-transfer regime remains invariant with temperature, whereas for the 1,11-undecanethiol SAM of intermediate chain length, a kinetic regime changeover from a gated or friction-controlled mechanism at low temperature (0-30 °C) to a nonadiabatic mechanism above 40 °C is observed. To the best of our knowledge, this is the first time a thermal-induced transition between these two kinetic regimes is reported for a metalloprotein.

8.
FEBS J ; 280(8): 1830-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23438074

RESUMO

UNLABELLED: l-galactono-1,4-lactone dehydrogenase (GALDH) catalyzes the terminal step of vitamin C biosynthesis in plant mitochondria. Here we investigated the communication between Arabidopsis thaliana GALDH and its natural electron acceptor cytochrome c (Cc). Using laser-generated radicals we observed the formation and stabilization of the GALDH semiquinone anionic species (GALDHSQ ). GALDHSQ oxidation by Cc exhibited a nonlinear dependence on Cc concentration consistent with a kinetic mechanism involving protein-partner association to form a transient bimolecular complex prior to the electron transfer step. Oxidation of GALDHSQ by Cc was significantly impaired at high ionic strength, revealing the existence of attractive charge-charge interactions between the two reactants. Isothermal titration calorimetry showed that GALDH weakly interacts with both oxidized and reduced Cc. Chemical shift perturbations for (1) H and (15) N nuclei of Cc, arising from the interactions with unlabeled GALDH, were used to map the interacting surface of Cc. For Arabidopsis Cc and yeast Cc, similar residues are involved in the interaction with GALDH. These residues are confined to a single surface surrounding the heme edge. The range of chemical shift perturbations for the physiological Arabidopsis Cc-GALDH complex is larger than that of the non-physiological yeast Cc-GALDH complex, indicating that the former complex is more specific. In summary, the results point to a relatively low affinity GALDH-Cc interaction, similar for all partner redox states, involving protein-protein dynamic motions. Evidence is also provided that Cc utilizes a conserved surface surrounding the heme edge for the interaction with GALDH and other redox partners. DATABASE: NMR assignment of the backbone amide resonances of Arabidopsis CcRED has been deposited in BMRB database (BMRB accession number 18828). L-galactono-1,4-lactone dehydrogenase (L-galactono-1,4-lactone: ferricytochrome c oxidoreductase, EC 1.3.2.3).


Assuntos
Citocromos c/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Calorimetria , Espectroscopia de Ressonância Magnética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...