Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114665, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062216

RESUMO

Encapsulated cell-based therapies for solid tumors have shown promising results in pre-clinical settings. However, the inability to culture encapsulated therapeutic cells prior to their transplantation has limited their translation into clinical settings. In this study, we created a wide variety of engineered therapeutic cells (ThC) loaded in micropore-forming gelatin methacryloyl (GelMA) hydrogel (CellDex) capsules that can be cultured in vitro prior to their transplantation in surgically debulked solid tumors. We show that both allogeneic and autologous engineered cells, such as stem cells (SCs), macrophages, NK cells, and T cells, proliferate within CellDex capsules and migrate out of the gel in vitro and in vivo. Furthermore, tumor cell specific therapeutic proteins and oncolytic viruses released from CellDex capsules retain and prolong their anti-tumor effects. In vivo, ThCs in pre-manufactured Celldex capsules persist long-term and track tumor cells. Moreover, chimeric antigen receptor (CAR) T cell bearing CellDex (T-CellDex) and human SC releasing therapeutic proteins (hSC-CellDex) capsules show therapeutic efficacy in metastatic and primary brain tumor resection models that mimic standard of care of tumor resection in patients. Overall, this unique approach of pre-manufactured micropore-forming CellDex capsules offers an effective off-the-shelf clinically viable strategy to treat solid tumors locally.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Neoplasias/patologia , Receptores de Antígenos Quiméricos/metabolismo , Células Matadoras Naturais , Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva/métodos
2.
Cancers (Basel) ; 12(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046278

RESUMO

Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 are enzymes which post-translationally modify proteins through poly(ADP-ribosyl)ation (PARylation)-the transfer of ADP-ribose chains onto amino acid residues-with a resultant modulation of protein function. Many targets of PARP-1/2-dependent PARylation are involved in the DNA damage response and hence, the loss of these proteins disrupts a wide range of biological processes, from DNA repair and epigenetics to telomere and centromere regulation. The central role of these PARPs in DNA metabolism in cancer cells has led to the development of PARP inhibitors as new cancer therapeutics, both as adjuvant treatment potentiating chemo-, radio-, and immuno-therapies and as monotherapy exploiting cancer-specific defects in DNA repair. However, a cancer is not just made up of cancer cells and the tumor microenvironment also includes multiple other cell types, particularly stromal and immune cells. Interactions between these cells-cancerous and non-cancerous-are known to either favor or limit tumorigenesis. In recent years, an important role of PARP-1 and PARP-2 has been demonstrated in different aspects of the immune response, modulating both the innate and adaptive immune system. It is now emerging that PARP-1 and PARP-2 may not only impact cancer cell biology, but also modulate the anti-tumor immune response. Understanding the immunomodulatory roles of PARP-1 and PARP-2 may provide invaluable clues to the rational development of more selective PARP-centered therapies which target both the cancer and its microenvironment.

3.
Oncogene ; 39(13): 2835-2843, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32001817

RESUMO

Poly(ADP-ribose)-polymerase (PARP)-1 and PARP-2 play an essential role in the DNA damage response. Based on this effect of PARP in the tumor cell itself, PARP inhibitors have emerged as new therapeutic tools both approved and in clinical trials. However, the interactome of multiple other cell types, particularly T cells, within the tumor microenvironment are known to either favor or limit tumorigenesis. Here, we bypassed the embryonic lethality of dually PARP-1/PARP-2-deficient mice by using a PARP-1-deficient mouse with a Cd4-promoter-driven deletion of PARP-2 in T cells to investigate the understudied role of these PARPs in the modulation of T cell responses against AT-3-induced breast tumors. We found that dual PARP-1/PARP-2-deficiency in T cells promotes tumor growth while single deficiency of each protein limited tumor progression. Analysis of tumor-infiltrating cells in dual PARP-1/PARP-2-deficiency host-mice revealed a global change in immunological profile and impaired recruitment and activation of T cells. Conversely, single PARP-1 and PARP-2-deficiency tends to produce an environment with an active and partially upregulated immune response. Our findings pinpoint opposite effects of single and dual PARP-1 and PARP-2-deficiency in modulating the antitumor response with an impact on tumor progression, and will have implications for the development of more selective PARP-centered therapies.


Assuntos
Carcinogênese/imunologia , Neoplasias Mamárias Experimentais/imunologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Linfócitos T/imunologia , Animais , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral/transplante , Progressão da Doença , Feminino , Humanos , Imunidade Celular , Glândulas Mamárias Humanas/imunologia , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Linfócitos T/metabolismo , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
4.
Cell Death Differ ; 26(12): 2667-2681, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30996287

RESUMO

Poly (ADP-ribose) polymerase (PARP)-1 and PARP-2 regulate the function of various DNA-interacting proteins by transferring ADP-ribose emerging from catalytic cleavage of cellular ß-NAD+. Hence, mice lacking PARP-1 or PARP-2 show DNA perturbations ranging from altered DNA integrity to impaired DNA repair. These effects stem from the central role that PARP-1 and PARP-2 have on the cellular response to DNA damage. Failure to mount a proper response culminates in cell death. Accordingly, PARP inhibitors are emerging as promising drugs in cancer therapy. However, the full impact of these inhibitors on immunity, including B-cell antibody production, remains elusive. Given that mice carrying dual PARP-1 and PARP-2 deficiency develop early embryonic lethality, we crossed PARP-1-deficient mice with mice carrying a B-cell-conditional PARP-2 gene deletion. We found that the resulting dually PARP-1 and PARP-2-deficient mice had perturbed bone-marrow B-cell development as well as profound peripheral depletion of transitional and follicular but not marginal zone B-cells. Of note, bone-marrow B-cell progenitors and peripheral mature B-cells were conserved in mice carrying either PARP-1 or PARP-2 deficiency. In dually PARP-1 and PARP-2-deficient mice, B-cell lymphopenia was associated with increased DNA damage and accentuated death in actively proliferating B-cells. Moreover, dual PARP-1 and PARP-2 deficiency impaired antibody responses to T-independent carbohydrate but not to T-dependent protein antigens. Notwithstanding the pivotal role of PARP-1 and PARP-2 in DNA repair, combined PARP-1 and PARP-2 deficiency did not perturb the DNA-editing processes required for the generation of a protective antibody repertoire, including Ig V(D)J gene recombination and IgM-to-IgG class switching. These findings provide key information as to the potential impact of PARP inhibitors on humoral immunity, which will facilitate the development of safer PARP-targeting regimens against cancer.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Rearranjo Gênico , Genes de Imunoglobulinas , Humanos , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...