Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473963

RESUMO

The protein p32 (C1QBP) is a multifunctional and multicompartmental homotrimer that is overexpressed in many cancer types, including colon cancer. High expression levels of C1QBP are negatively correlated with the survival of patients. Previously, we demonstrated that C1QBP is an essential promoter of migration, chemoresistance, clonogenic, and tumorigenic capacity in colon cancer cells. However, the mechanisms underlying these functions and the effects of specific C1QBP protein inhibitors remain unexplored. Here, we show that the specific pharmacological inhibition of C1QBP with the small molecule M36 significantly decreased the viability rate, clonogenic capacity, and proliferation rate of different colon cancer cell lines in a dose-dependent manner. The effects of the inhibitor of C1QBP were cytostatic and non-cytotoxic, inducing a decreased activation rate of critical pro-malignant and mitogenic cellular pathways such as Akt-mTOR and MAPK in RKO colon cancer cells. Additionally, treatment with M36 significantly affected the mitochondrial integrity and dynamics of malignant cells, indicating that p32/C1QBP plays an essential role in maintaining mitochondrial homeostasis. Altogether, our results reinforce that C1QBP is an important oncogene target and that M36 may be a promising therapeutic drug for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Citostáticos , Humanos , Citostáticos/farmacologia , Mitógenos/farmacologia , Transdução de Sinais , Proteínas Mitocondriais/metabolismo , Proliferação de Células , Proteínas de Transporte/metabolismo
2.
Stem Cell Rev Rep ; 20(1): 25-51, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922108

RESUMO

CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/ß-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Células-Tronco Neoplásicas/metabolismo , Autorrenovação Celular
3.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982333

RESUMO

The presence of cancer stem cells (CSCs) has been associated with the induction of drug resistance and disease recurrence after therapy. 5-Fluorouracil (5FU) is widely used as the first-line treatment of colorectal cancer (CRC). However, its effectiveness may be limited by the induction of drug resistance in tumor cells. The Wnt pathway plays a key role in the development and CRC progression, but it is not clearly established how it is involved in CSCs resistance to treatment. This work aimed to investigate the role played by the canonical Wnt/ß-catenin pathway in CSCs resistance to 5FU treatment. Using tumor spheroids as a model of CSCs enrichment of CRC cell lines with different Wnt/ß-catenin contexts, we found that 5FU induces in all CRC spheroids tested cell death, DNA damage, and quiescence, but in different proportions for each one: RKO spheroids were very sensitive to 5FU, while SW480 were less susceptible, and the SW620 spheroids, the metastatic derivative of SW480 cells, displayed the highest resistance to death, high clonogenic capacity, and the highest ability for regrowth after 5FU treatment. Activating the canonical Wnt pathway with Wnt3a in RKO spheroids decreased the 5FU-induced cell death. But the Wnt/ß-catenin pathway inhibition with Adavivint alone or in combination with 5FU in spheroids with aberrant activation of this pathway produced a severe cytostatic effect compromising their clonogenic capacity and diminishing the stem cell markers expression. Remarkably, this combined treatment also induced the survival of a small cell subpopulation that could exit the arrest, recover SOX2 levels, and re-grow after treatment.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/patologia , Neoplasias do Colo/metabolismo , Linhagem Celular , Fluoruracila/uso terapêutico , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proliferação de Células , Células-Tronco Neoplásicas/metabolismo
4.
Front Oncol ; 13: 1121787, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969011

RESUMO

Introduction: Cancer Stem Cells (CSC) are responsible for maintaining tumor growth, chemoresistance, and metastasis. Therefore, understanding their characteristics is critical to progress in cancer therapy. While the contribution of the canonical Wnt/b-catenin signaling in both normal and CSCs had been well established, the function of non-canonical Wnt signaling cascades in stem cells is unclear. Recently, we reported that Wnt ligands trigger complex signaling in which the canonical and non-canonical responses can be simultaneously activated by one ligand in colon cancer cells, suggesting, therefore, that noncanonical Wnt pathways may also be important in CSCs. Methods: The present work aimed to know the role of the Wnt/Ca2+ pathway in colon CSCs. We used tumorspheres as a model of CSCs enrichment of CRC cell lines with different Wnt/b-catenin contexts. Results: Using Wnt3a and Wnt5a as prototype ligands to activate the canonical or the non-canonical pathways, respectively, we found that both Wnt3a and Wnt5a promote sphere-formation capacity and proliferation without stimulating b-catenin-dependent transcription. Upregulation of sphere formation by Wnt5a or Wnt3a requires the downstream activation of Phospholipase C and transcriptional factor NFAT. Moreover, the single specific inhibition of PLC or NFAT, using U73122 and 11R-VIVIT, respectively, leads to impaired sphere formation. Discussion: Our results indicate that both types of ligands activate the Wnt/Ca2+ signaling axis to induce/maintain the self-renewal efficiency of CSCs, demonstrating to be essential for the functions of CSC in colon cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...