Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 17(2): e202300249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010860

RESUMO

Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required. In this work, we demonstrate how the combination of transient thermometry, a technique already used for early diagnosis of tumors, and infrared-emitting nanothermometers makes possible the in vivo detection of the onset of muscle atrophy at short (<1 day) times after a denervation event. The physiological reasons behind these experimental results have been explored by performing three dimensional numerical simulations based on the Pennes' bioheat equation. It is concluded that the alterations in muscle thermal dynamics at the onset of muscle atrophy are consequence of the skin perfusion increment caused by the alteration of peripheral nervous autonomous system. This work demonstrates the potential of infrared luminescence thermometry for early detection of diseases of the nervous system opening the venue toward the development of new diagnosis tools.


Assuntos
Luminescência , Termometria , Humanos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Termometria/métodos , Denervação/efeitos adversos , Diagnóstico Precoce
2.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762414

RESUMO

Denervation-induced muscle atrophy is a frequent cause of skeletal muscle diseases. However, the role of the most important muscle growth factor, insulin-like growth factor (IGF-1), in this process is poorly understood. IGF-1 activity is controlled by six IGF-1 binding proteins (IGFBPs). In skeletal muscle, IGFBP-5 seems to have an important role in atrophic processes. Furthermore, pappalysins (PAPP-A) modulate muscle growth by increasing IGF-1 bioavailability through IGFBP cleavage. We aimed to study the time-dependent changes in the IGF1-IGFBP5-PAPP system and its regulators in gastrocnemius muscle after sciatic denervation. Gastrocnemius atrophy and overexpression of IGF-1 was observed from day 3 post-denervation. The proteolytic factors measured were elevated from day 1 post-denervation onwards. Expression of both IGFBP-5 and pappalysins were increased on days 1 and 3. Subsequently, on days 7 to 14 pappalysins returned to control levels while IGFBP-5 remained elevated. The ratio IGFBP-5/PAPP-A was correlated with the main proteolytic markers. All data suggest that the initial increase of pappalysins could facilitate the IGF-1 action on muscle growth, whereas their subsequent decrease could lead to further muscle wasting.


Assuntos
Fator de Crescimento Insulin-Like I , Proteína Plasmática A Associada à Gravidez , Fator de Crescimento Insulin-Like I/metabolismo , Proteína Plasmática A Associada à Gravidez/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Peptídeo Hidrolases/metabolismo , Músculos/metabolismo , Denervação
3.
Front Nutr ; 9: 918841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795581

RESUMO

Nutraceuticals are products of natural origin widely used for the treatment and/or prevention of some chronic diseases that are highly prevalent in Western countries, such as obesity or type II diabetes, among others. However, its possible use in the prevention of acute diseases that can put life at risk has been poorly studied. Sepsis is an acute condition that causes cardiovascular and skeletal muscle damage due to a systemic inflammatory state. The aim of this work was to evaluate the possible beneficial effect of a new nutraceutical based on a mixture of algae oil (AO) and extra virgin olive oil (EVOO) supplemented with an olive leaf extract (OLE) in the prevention of cardiovascular alterations and skeletal muscle disorders induced by sepsis in rats. For this purpose, male Wistar rats were treated with the nutraceutical or with water p.o. for 3 weeks and after the treatment they were injected with 1mg/kg LPS twice (12 and 4 h before sacrifice). Pretreatment with the nutraceutical prevented the LPS-induced decrease in cardiac contractility before and after the hearts were subjected to ischemia-reperfusion. At the vascular level, supplementation with the nutraceutical did not prevent hypotension in septic animals, but it attenuated endothelial dysfunction and the increased response of aortic rings to the vasoconstrictors norepinephrine and angiotensin-II induced by LPS. The beneficial effects on cardiovascular function were associated with an increased expression of the antioxidant enzymes SOD-1 and GSR in cardiac tissue and SOD-1 and Alox-5 in arterial tissue. In skeletal muscle, nutraceutical pretreatment prevented LPS-induced muscle proteolysis and autophagy and significantly increased protein synthesis as demonstrated by decreased expression of MURF-1, atrogin-1, LC3b and increased MCH-I and MCH -IIa in gastrocnemius muscle. These effects were associated with a decrease in the expression of TNFα, HDAC4 and myogenin. In conclusion, treatment with a new nutraceutical based on a mixture of AO and EVOO supplemented with OLE is useful to prevent cardiovascular and muscular changes induced by sepsis in rats. Thus, supplementation with this nutraceutical may constitute an interesting strategy to reduce the severity and mortality risk in septic patients.

4.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408999

RESUMO

Sepsis increases glucocorticoid and decreases IGF-1, leading to skeletal muscle wasting and cachexia. Muscle atrophy mainly takes place in locomotor muscles rather than in respiratory ones. Our study aimed to elucidate the mechanism responsible for this difference in muscle proteolysis, focusing on local inflammation and IGF-1 as well as on their glucocorticoid response and HDAC4-myogenin activation. Sepsis was induced in adult male rats by lipopolysaccharide (LPS) injection (10 mg/kg), and 24 h afterwards, rats were euthanized. LPS increased TNFα and IL-10 expression in both muscles studied, the diaphragm and gastrocnemius, whereas IL-6 and SOCS3 mRNA increased only in diaphragm. In comparison with gastrocnemius, diaphragm showed a lower increase in proteolytic marker expression (atrogin-1 and LC3b) and in LC3b protein lipidation after LPS administration. LPS increased the expression of glucocorticoid induced factors, KLF15 and REDD1, and decreased that of IGF-1 in gastrocnemius but not in the diaphragm. In addition, an increase in HDAC4 and myogenin expression was induced by LPS in gastrocnemius, but not in the diaphragm. In conclusion, the lower activation of both glucocorticoid signaling and HDAC4-myogenin pathways by sepsis can be one of the causes of lower sepsis-induced proteolysis in the diaphragm compared to gastrocnemius.


Assuntos
Fator de Crescimento Insulin-Like I , Sepse , Animais , Diafragma/metabolismo , Glucocorticoides/metabolismo , Histona Desacetilases/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miogenina/metabolismo , Proteólise , Ratos , Sepse/metabolismo
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502376

RESUMO

Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic-growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive. However, in chronic inflammatory conditions, the inhibition of the hypothalamic-GH-IGF-1 axis contributes to the catabolic process, with skeletal muscle atrophy and cachexia. Here, we review the changes in pituitary GH secretion, IGF-1, and IGF-1 binding protein-3 (IGFBP-3), as well as the mechanism that mediated those responses. The contribution of GH and IGF-1 to muscle wasting during inflammation has also been analyzed.


Assuntos
Caquexia/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Caquexia/fisiopatologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Humanos , Hipotálamo/metabolismo , Inflamação/fisiopatologia , Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...