Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080966

RESUMO

The high freshwater consumption requirements in shrimp biorefinery approaches represents one of the major drawbacks of implementing these technologies within the shrimp processing industry. This also affects the costs associated with the plant operation, and consequently, the overall economic performance of the project. The application of mass integration tools such as water pinch analysis can reduce frewshwater consumption by up to 80%, contributing to shrimp biorefinery sustainability. In this work, the economic evaluation and the techno-economic sensitivity analysis for a mass integrated approach for shrimp biorefinery were performed to determine the economic feasibility of the project when located in the North-Colombia region and to identify the critical techno-economic variables affecting the profitability of the process. The integrated approach designed to process 4113.09 tons of fresh shrimp in Colombia reaches a return on investment (%ROI) at 65.88% and a net present value (NPV) at 10.40 MM USD. The process supports decreases of up to 28% in capacity of production and increases of 12% and 11% in the cost of raw materials and variable operating costs without incurring losses, respectively. These findings suggest that the proposed design of the water recycling network coupled to a shrimp biorefinery approach is attractive from an economic point of view.

2.
ACS Omega ; 5(21): 12126-12135, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548392

RESUMO

The presence of marine pollution in Cartagena Bay (Colombia) is an alarming environmental issue because of the ecotoxicological properties of contaminants such as polycyclic aromatic hydrocarbons (PAHs) that may affect the biodiversity of coastal ecosystems. In this sense, there is a need to propose alternatives to remediate the environmental pollution of such bodies of water. The aim of this work was to design an adsorption-based treatment process for the removal of PAHs from seawater and sediments. Two design cases were considered: (i) a base process without a PAH desorption unit and (ii) an alternative process including a PAH desorption unit. Both designs were simulated using Aspen Plus to obtain mass and energy balances. A parametric sensitivity analysis was carried out to determine optimum operating conditions for solvent recovery and treatment efficiency. The pressure and temperature of evaporators were selected as key parameters, as well as PAH loads in the influent. The environmental performance of base and alternative designs was also evaluated via waste reduction algorithm (WAR) methodology. A maximum recovered solvent flow rate was found when the evaporator operates at 56 °C and 0.81-0.83 atm. In addition, the total generation rate of potential environmental impacts (PEI) reported negative values for cases 1, 3, and 4 (-9.80 × 10-1, -9.25 × 10+1, -1.19 × 10+1, and 1.04 × 10+1 PEI/h). The major concern derived from this analysis is the high environmental impacts reached by the photochemical oxidation potential (PCOP) category associated with the use of hexane and acetone as solvents during PAH removal from sediments. In general, both designs of seawater and sediment treatment seem to be an environmentally friendly alternative for marine pollution remediation.

3.
PeerJ ; 7: e8113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788362

RESUMO

BACKGROUND: The production of photocatalytic nanoparticles such as TiO2 has received increasing interest for biomedical and wastewater treatment applications. However, the conventional synthesis of such materials faces several environmental concerns. METHODS: In this work, green synthesis is addressed to prepare TiO2 nanoparticles at large scale using Lemongrass (Cymbopogon citratus) and titanium isopropoxide (TTIP). This process was designed and modeled using computer-aided process engineering (CAPE) in order to obtain the extended mass/energy balances, as well as operating parameters. Process simulation was carried out using the commercial software Aspen Plus®. In addition, energy performance of large-scale nanoparticle production was analyzed to identify alternatives for process improvement from an exergetic point of view. RESULTS: The production capacity of the plant was estimated as 1,496 t/y of TiO2 nanoparticles by the conversion of 32,675 t/y lemongrass and 5,724 t/y TTIP. Hence, the overall production yield is 0.26 kg TiO2/kg TTIP. Exergy analysis reported an overall exergy efficiency of 0.27% and an exergy loss of 159,824.80 MJ/h. These results suggest that such a process requires the implementation of process improvement strategies to reach a more sustainable design from energy and thermodynamic viewpoints.

4.
ACS Omega ; 4(6): 10834-10844, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460181

RESUMO

Nanocomposites composed of polyacrylamide and nanoclay were synthesized via free-radical cross-linking polymerization and used to adsorb Co2+ and Ni2+ ions from water. The polyacrylamide (PAM)/sodium montmorillonite (Na-MMT) nanocomposites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy to confirm the interaction between montmorillonite and the polymer matrix. The effects of pH and heavy metal ion concentration on the adsorption capacity of PAM/Na-MMT were evaluated to determine suitable operating conditions for further experiments. Batch adsorption experimental data were fitted to Langmuir and Freundlich models, which provided information about the adsorption mechanism and the adsorbent surface. The highest Ni2+ removal yield was found to be 99.3% using the 2:1 (w/w) nanocomposite at pH 6 in 100 ppm of Ni2+ solution. The Co2+ removal yield was 98.7% at pH 6 in 60 ppm of Co2+ solution using the 4:1 (w/w) nanocomposite. These results were higher than those obtained by polyacrylamide and nanoclay under the same conditions (removal yield between 87.40 and 94.50%), indicating that PAM/Na-MMT nanocomposites remove heavy metal water pollutants more efficiently and can be used as a novel adsorbent for further industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...