Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848852

RESUMO

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.


Assuntos
Osso e Ossos , Compostos de Cálcio , Nanopartículas , Óxidos , Poliésteres , Amido , Engenharia Tecidual , Alicerces Teciduais , Amido/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Nanopartículas/química , Óxidos/química , Compostos de Cálcio/química , Ratos , Camundongos , Materiais Biocompatíveis/química , Ratos Wistar , Linhagem Celular , Nanocompostos/química
2.
Int J Biol Macromol ; 248: 125939, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482162

RESUMO

Starch is a biodegradable biopolymer, a sustainable material that can replace conventional petrochemical-based plastics. However, starch has some limitations, as it must be processed by heating and treated mechanically with a plasticizer to become thermoplastic starch (TPS). Different variables such as mixing speeds, amount, and kind of plasticizers play a vital role in preparing TPS by melting. Despite this, the properties of the TPS are not comparable with those of traditional plastics. To overcome this limitation, microcellulose or nanocellulose is added to TPS by melt mixing, including the extrusion and internal mixing process, which enables large-scale production. This review aims to compile several studies that evaluate the effect of plasticizers, as well as the relevance of incorporating different cellulosic fillers of different dimensions on the properties of TPS obtained by melt mixing. Potential applications of these materials in food packaging, biomedical applications, and other opportunities are also described.


Assuntos
Celulose , Plastificantes , Amido , Plásticos
3.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904322

RESUMO

The development of scaffolding obtained by electrospinning is widely used in tissue engineering due to porous and fibrous structures that can mimic the extracellular matrix. In this study, poly (lactic-co-glycolic acid) (PLGA)/collagen fibers were fabricated by electrospinning method and then evaluated in the cell adhesion and viability of human cervical carcinoma HeLa and NIH-3T3 fibroblast for potential application in tissue regeneration. Additionally, collagen release was assessed in NIH-3T3 fibroblasts. The fibrillar morphology of PLGA/collagen fibers was verified by scanning electron microscopy. The fiber diameter decreased in the fibers (PLGA/collagen) up to 0.6 µm. FT-IR spectroscopy and thermal analysis confirmed that both the electrospinning process and the blend with PLGA give structural stability to collagen. Incorporating collagen in the PLGA matrix promotes an increase in the material's rigidity, showing an increase in the elastic modulus (38%) and tensile strength (70%) compared to pure PLGA. PLGA and PLGA/collagen fibers were found to provide a suitable environment for the adhesion and growth of HeLa and NIH-3T3 cell lines as well as stimulate collagen release. We conclude that these scaffolds could be very effective as biocompatible materials for extracellular matrix regeneration, suggesting their potential applications in tissue bioengineering.

4.
Food Chem ; 360: 129966, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33993071

RESUMO

Spectroscopies analysis indicated that kefiran contains branched hexasaccharide repeating units. Neat kefiran films, 2 and 5% w/w of glycerol, d-glucitol, d-galactitol, d-mannitol, and d-limonene were incorporated as plasticizers. Neat and plasticized kefiran films were characterized by physical, thermal, mechanical, optical, and water solubilization properties. Neat kefiran had a glass transition temperature (Tg) of -20 ± 2 °C and, with the addition of plasticizers between -15 to -17 ± 2 °C. The values were close to the neat kefiran, and the results could be attributed to a lower amount of plasticizer used. The solubility of the glycerol plasticized films increases by 33% and decreased with the concentration of other plasticizers in comparison with the neat kefiran. d-glucitol and d-galactitol decreased the microhardness and Young's Modulus of films around 30% and 74% respectively, obtaining more flexible kefiran films. Kefiran based films could find applications as potential materials in the food-packaging industry.


Assuntos
Embalagem de Alimentos/métodos , Fenômenos Físicos , Plastificantes/química , Polissacarídeos/química , Módulo de Elasticidade , Permeabilidade , Solubilidade , Temperatura , Resistência à Tração , Água/química
5.
Polymers (Basel) ; 11(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30960301

RESUMO

Materials that have high dielectric constants, high energy densities and minimum dielectric losses are highly desirable for use in capacitor devices. In this sense, polymers and polymer blends have several advantages over inorganic and composite materials, such as their flexibilities, high breakdown strengths, and low dielectric losses. Moreover, the dielectric performance of a polymer depends strongly on its electronic, atomic, dipolar, ionic, and interfacial polarizations. For these reasons, chemical modification and the introduction of specific functional groups (e.g., F, CN and R-S(=O)2-R´) would improve the dielectric properties, e.g., by varying the dipolar polarization. These functional groups have been demonstrated to have large dipole moments. In this way, a high orientational polarization in the polymer can be achieved. However, the decrease in the polarization due to dielectric dissipation and the frequency dependency of the polarization are challenging tasks to date. Polymers with high glass transition temperatures (Tg) that contain permanent dipoles can help to reduce dielectric losses due to conduction phenomena related to ionic mechanisms. Additionally, sub-Tg transitions (e.g., γ and ß relaxations) attributed to the free rotational motions of the dipolar entities would increase the polarization of the material, resulting in polymers with high dielectric constants and, hopefully, dielectric losses that are as low as possible. Thus, polymer materials with high glass transition temperatures and considerable contributions from the dipolar polarization mechanisms of sub-Tg transitions are known as "dipolar glass polymers". Considering this, the main aspects of this combined strategy and the future prospects of these types of material were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...