Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1226, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216624

RESUMO

Although the ecological network approach has substantially contributed to the study of plant-pollinator interactions, current understanding of their functional structure is biased towards diurnal pollinators. Nocturnal pollinators have been systematically ignored despite the publication of several studies that have tried to alleviate this diurnal bias. Here, we explored whether adding this neglected group of pollinators had a relevant effect on the overall architecture of three high mountain plant-pollinator networks. Including nocturnal moth pollinators modified network properties by decreasing total connectivity, connectance, nestedness and robustness to plant extinction; and increasing web asymmetry and modularity. Nocturnal moths were not preferentially connected to the most linked plants of the networks, and they were grouped into a specific "night" module in only one of the three networks. Our results indicate that ignoring the nocturnal component of plant-pollinator networks may cause changes in network properties different from those expected from random undersampling of diurnal pollinators. Consequently, the neglect of nocturnal interactions may provide a distorted view of the structure of plant-pollinator networks with relevant implications for conservation assessments.


Assuntos
Mariposas , Polinização , Animais , Plantas , Insetos
2.
Ann Bot ; 132(3): 541-552, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37647862

RESUMO

BACKGROUND AND AIMS: Within-population genetic and phenotypic variation play a key role in the development of adaptive responses to environmental change. Between-population variation is also an essential element in assessing the evolutionary potential of species in response to changes in environmental conditions. In this context, common garden experiments are a useful tool to separate the genetic and environmental components of phenotypic variation. We aimed to assess within- and between-population phenotypic variation of Lupinus angustifolius L. in terms of its evolutionary potential to adapt to ongoing climate change. METHODS: We evaluated populations' phenotypic variation of foliar, phenological and reproductive traits with a common garden experiment. Patterns of functional trait variation were assessed with (1) mixed model analyses and coefficients of variation (CVs) with confidence intervals, (2) principal component analyses (PCAs) and (3) correlations between pairs of traits. Analyses were performed at the population level (four populations) and at the latitude level (grouping pairs of populations located in two latitudinal ranges). KEY RESULTS: Phenotypic variation had a significant genetic component associated with a latitudinal pattern. (1) Mixed models found lower specific leaf area, advanced flowering phenology and lower seed production of heavier seeds in southern populations, whereas CV analyses showed lower within-latitude variation especially in phenological and reproductive traits in southern populations. (2) PCAs showed a clearer differentiation of phenotypic variation between latitudes than between populations. (3) Correlation analyses showed a greater number of significant correlations between traits in southern populations (25 vs. 13). CONCLUSIONS: Between-population phenotypic variation was determined by contrasting temperature and drought at different latitude and elevation. Southern populations had differential trait values compatible with adaptations to high temperatures and drought. Moreover, they had lower within-population variation and a greater number of trait correlations probably as a result of these limiting conditions, making them more vulnerable to climate change.


Assuntos
Lupinus , Lupinus/genética , Fenótipo , Sementes , Folhas de Planta , Reprodução
3.
Plants (Basel) ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986946

RESUMO

Climate change poses a novel threat to biodiversity that urgently requires the development of adequate conservation strategies. Living organisms respond to environmental change by migrating to locations where their ecological niche is preserved or by adapting to the new environment. While the first response has been used to develop, discuss and implement the strategy of assisted migration, facilitated adaptation is only beginning to be considered as a potential approach. Here, we present a review of the conceptual framework for facilitated adaptation, integrating advances and methodologies from different disciplines. Briefly, facilitated adaptation involves a population reinforcement that introduces beneficial alleles to enable the evolutionary adaptation of a focal population to pressing environmental conditions. To this purpose, we propose two methodological approaches. The first one (called pre-existing adaptation approach) is based on using pre-adapted genotypes existing in the focal population, in other populations, or even in closely related species. The second approach (called de novo adaptation approach) aims to generate new pre-adapted genotypes from the diversity present in the species through artificial selection. For each approach, we present a stage-by-stage procedure, with some techniques that can be used for its implementation. The associated risks and difficulties of each approach are also discussed.

4.
Evol Appl ; 16(1): 62-73, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699122

RESUMO

In the present framework of global warming, it is unclear whether evolutionary adaptation can happen quick enough to preserve the persistence of many species. Specifically, we lack knowledge about the adaptive potential of the different populations in relation to the various constraints that may hamper particular adaptations. There is evidence indicating that early flowering often provides an adaptive advantage to plants in temperate zones in response to global warming. Thus, the objective of this study was to assess the adaptive potential for advancing flowering onset in Lupinus angustifolius L. (Fabaceae). Seeds from four populations from two contrasting latitudes in Spain were collected and sown in a common garden environment. Selecting the 25% of the individuals that flowered earlier in the first generation, over three generations, three different early flowering selection lines were established, involving both self-crosses and outcrosses. All artificial selection lines advanced their flowering significantly with respect to the control line in the northernmost populations, but not in the southern ones. Selection lines obtained from outcrossing had a greater advancement in flowering than those from self-crossing. No differences were found in the number or weight of the seeds produced between control and artificial selection lines, probably because plants in the common garden were drip irrigated. These results suggest that northern populations may have a greater adaptive potential and that southern populations may be more vulnerable in the context of climate warming. However, earlier flowering was also associated with changes in other traits (height, biomass, shoot growth, specific leaflet area, and leaflet dry matter content), and the effects of these changes varied greatly depending on the latitude of the population and selection line. Assessments of the ability of populations to cope with climate change through this and other approaches are essential to manage species and populations in a more efficient way.

5.
Glob Chang Biol ; 28(13): 4143-4162, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35359032

RESUMO

Environmental variation within a species' range can create contrasting selective pressures, leading to divergent selection and novel adaptations. The conservation value of populations inhabiting environmentally marginal areas remains in debate and is closely related to the adaptive potential in changing environments. Strong selection caused by stressful conditions may generate novel adaptations, conferring these populations distinct evolutionary potential and high conservation value under climate change. On the other hand, environmentally marginal populations may be genetically depauperate, with little potential for new adaptations to emerge. Here, we explored the use of ecological niche models (ENMs) linked with common garden experiments to predict and test for genetically determined phenotypic differentiation related to contrasting environmental conditions. To do so, we built an ENM for the alpine plant Silene ciliata in central Spain and conducted common garden experiments, assessing flowering phenology changes and differences in leaf cell resistance to extreme temperatures. The suitability patterns and response curves of the ENM led to the predictions that: (1) the environmentally marginal populations experiencing less snowpack and higher minimum temperatures would have delayed flowering to avoid risks of late-spring frosts and (2) those with higher minimum temperatures and greater potential evapotranspiration would show enhanced cell resistance to high temperatures to deal with physiological stress related to desiccation and heat. The common garden experiments revealed the expected genetically based phenotypic differentiation in flowering phenology. In contrast, they did not show the expected differentiation for cell resistance, but these latter experiments had high variance and hence lower statistical power. The results highlight ENMs as useful tools to identify contrasting putative selective pressures across species ranges. Linking ENMs with common garden experiments provides a theoretically justified and practical way to study adaptive processes, including insights regarding the conservation value of populations inhabiting environmentally marginal areas under ongoing climate change.


Assuntos
Adaptação Fisiológica , Mudança Climática , Aclimatação , Adaptação Fisiológica/fisiologia , Evolução Biológica , Ecossistema
6.
Evolution ; 75(4): 972-974, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33690886

RESUMO

To what extent do parallel and unique local adaptation occur along elevational gradients? In a reciprocal transplant experiment, Bachmann and Van Buskirk found stronger evidence for parallel adaptation to elevation than for unique local adaptation in Rana temporaria populations of the Swiss Alps. This finding has important implications for understanding gene flow effects on adaptive patterns and provides a useful investigative framework for the study of adaptation.


Assuntos
Adaptação Fisiológica , Altitude , Aclimatação , Animais , Fluxo Gênico , Rana temporaria
7.
Front Plant Sci ; 9: 1698, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538712

RESUMO

The study of the drivers that shape spatial genetic structure across heterogeneous landscapes is one of the main approaches used to understand population dynamics and responses in changing environments. While the Isolation-by-Distance model (IBD) assumes that genetic differentiation increases among populations with geographical distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers and other landscape features that impede gene flow. On the other hand, the Isolation-by-Environment model (IBE) explains genetic differentiation through environmental differences between populations. Although spatial genetic studies have increased significantly in recent years, plants from alpine ecosystems are highly underrepresented, even though they are great suitable systems to disentangle the role of the different factors that structure genetic variation across environmental gradients. Here, we studied the spatial genetic structure of the Mediterranean alpine specialist Silene ciliata across its southernmost distribution limit. We sampled three populations across an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over three mountain ranges aligned across an E-W axis in the central part of the Iberian Peninsula. We genotyped 20 individuals per population based on eight microsatellite markers and used different landscape genetic tools to infer the role of topographic and environmental factors in shaping observed patterns along the altitudinal gradient. We found a significant genetic structure among the studied Silene ciliata populations which was related to the orography and E-W configuration of the mountain ranges. IBD pattern arose as the main factor shaping population genetic differentiation. Geographical barriers between mountain ranges also affected the spatial genetic structure (IBR pattern). Although environmental variables had a significant effect on population genetic diversity parameters, no IBE pattern was found on genetic structure. Our study reveals that IBD was the driver that best explained the genetic structure, whereas environmental factors also played a role in determining genetic diversity values of this dominant plant of Mediterranean alpine environments.

8.
Sci Rep ; 8(1): 9386, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925965

RESUMO

Phenology is often identified as one of the main structural driving forces of plant - flower visitor networks. Nevertheless, we do not yet have a full understanding of the effects of phenology in basic network build up mechanisms such as ecological modularity. In this study, we aimed to identify the effect of within-season temporal variation of plant and flower visitor activity on the network structural conformation. Thus, we analysed the temporal dynamics of a plant - flower visitor network in two Mediterranean alpine communities during one complete flowering season. In our approach, we built quantitative interaction networks and studied the dynamics through temporal beta diversity of species, interaction changes and modularity analysis. Within-season dissimilarity in the identity of interactions was mainly caused by species replacement through time (species turnover). Temporal replacement of species and interactions clearly impacted modularity, to the extent that species phenology emerged as a strong determinant of modularity in our networks. From an applied perspective, our results highlight the importance of considering the temporal variation of species interactions throughout the flowering season and the requirement of making comprehensive temporal sampling when aiming to build functionally consistent interaction networks.


Assuntos
Flores/fisiologia , Animais , Ecossistema , Insetos/fisiologia , Polinização/fisiologia
9.
Proc Biol Sci ; 281(1793)2014 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-25185998

RESUMO

Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges.


Assuntos
Evolução Biológica , Produtos Agrícolas/fisiologia , Cruzamento , Produtos Agrícolas/genética , Fenótipo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...