Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 302: 134643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35483664

RESUMO

Coastal sediments downstream of ultramafic catchments can show Ni and Cr concentration well above sediment quality guidelines. Despite their potential ecological impact, the bioavailability of these trace metals in such sedimentary settings has been poorly investigated. In this study, we tried to fill this gap by performing kinetic EDTA-extractions across a shore-to-reef gradient in lagoon sediments downstream of an ultramafic catchment in New Caledonia and interpreting the results in regard of synchrotron-derived speciation. Measured bioavailability ranged from very low for Cr (below 1% of total Cr) to medium for Ni (below 5% of total Ni). Both trace metals showed a decreasing shore-to-reef bioavailability gradient reflecting the larger deposition of ultramafic sediments close to the shore. According to synchrotron-derived speciation data, the very low bioavailability of Cr is attributed to its major occurrence as Cr(III)-bearing Fe-(oxyhydr)oxides and phyllosilicates, with no evidence of Cr(VI). Considering the low occurrence of Fe-sulfides, the medium bioavailability of Ni is considered to arise mainly from the reductive dissolution of Ni-bearing Fe-(oxyhydr)oxides during early diagenesis. This reaction also explains the medium bioavailability of Fe (up to 15% of total Fe) and the positive correlation observed with Total Organic Carbon (TOC). In this regard, this latter parameter appears as a major driver of Ni and Fe bioavailability in coastal sediments downstream of ultramafic catchments. On the opposite, in the absence of Mn-oxides, TOC has no influence on Mn bioavailability (up to 30% of total Mn) that appears more likely driven by sediment sources. From an ecological point of view, considering the Australian and New-Zealand High Interim Sediment Quality Guidelines (ANZ-ISQG-H), Cr should not represent a significant risk towards benthic communities in coastal sediments downstream of ultramafic catchments. On the opposite, Ni, Fe and Mn might represent an ecological risk that should be further investigated in such sedimentary settings.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Austrália , Disponibilidade Biológica , Cromo/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Ferro , Manganês , Metais Pesados/análise , Nova Caledônia , Níquel , Óxidos , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 689: 1212-1227, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31466160

RESUMO

In the tropics, continental weathering and erosion are major sources of trace metals towards estuaries and lagoons, where early diagenesis of sediments may influence their mobility and bioavailability. Determining trace metals speciation in tropical sedimentary settings is thus needed to assess their long-term fate and potential threat to fragile coastal ecosystems. In this study, we determined Fe, Ni and S speciation across a shore-to-reef gradient in sediments from the New Caledonia lagoon that receive mixed contribution from lateritic (iron-oxyhydroxides and clay minerals), volcano-sedimentary (silicates) and marine (carbonate) sources. Sulfur K-edge XANES data indicated a major contribution of pyrite (FeS2) to S speciation close to the shore. However, this contribution was found to dramatically decrease across the shore-to-reef gradient, S mainly occurring as sulfate close to the coral reef. In contrast, Fe and Ni K-edge XANES and EXAFS data indicated a minor contribution of pyrite to Fe and Ni speciation, and this contribution could be evidenced only close to the shore. The major fractions of Fe and Ni across the shore-to-reef gradient were found to occur as Ni- and Fe-bearing clay minerals consisting of smectite (~nontronite), glauconite and two types of serpentines (chrysotile and greenalite/berthierine). Among these clay minerals, greenalite/berthierine, glauconite and possibly smectite, were considered as authigenic. The low contribution of pyrite to trace metals speciation compared to clay minerals is interpreted as a result of (1) a reduced formation rate due to the low amounts of organic carbon compared to the Fe pool and (2) repeated re-oxidation events upon re-suspension of the sediments top layers due to the specific context of shallow lagoon waters. This study thus suggests that green clay authigenesis could represent a key process in the biogeochemical cycling of trace metals that are delivered to lagoon ecosystems upon continental erosion and weathering.

3.
Mar Pollut Bull ; 105(1): 208-14, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26902684

RESUMO

We report here an interannual survey (2006-2012) of coral cover in the northwestern lagoon of New Caledonia, to assess the impact of an important dredging operation (August 2008-February 2010) associated with the construction of the largest nickel mining site in the Pacific. A BACI (Before-After Control-Impact) analysis failed to detect any significant interaction between period (before, during, and after dredging) and the category of the stations (impact vs. control). Among the 31 stations surveyed, only seven showed decreasing coral cover during the study period, mainly due to a decline in Acroporidae. However, the relationship between the dredging and this decrease was highly plausible only for one station, situated 0.9km from the dredging site. High hydrodynamism in the study area, the abundance of resistant corals and efficient protective measures during the dredging operation might explain these localised and limited impacts.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Monitoramento Ambiental , Sedimentos Geológicos/análise , Animais , Mineração , Nova Caledônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...